首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

5.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

8.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
Two calix[4]arene derivatives containing 1,2,3-triazole moiety were synthesized via K2CO3-catalyzed1,3-dipolar cycloaddition reaction between calix[4]arene-based azide and active methylene compounds in good yields.The structures of the two compounds synthesized herein were fully confirmed by 1HNMR,,(13)C NMR,and MS(ESI).The thermal analysis showed that the mass losses of the synthesized compounds 4 and 5 containing 1,2,3-triazole groups are similar to each other.  相似文献   

12.
介绍了一个大学综合化学实验。该实验以对甲氧基苯酚和苯乙烯为原料,六氟异丙醇为溶剂,2,3-二氯-5,6-二氰基-1,4-苯醌为氧化剂,室温合成5-甲氧基-2-苯基-2,3-二氢苯并呋喃,并用IR、1H NMR、13C NMR和HRMS对产物结构进行表征。本实验有益于激发学生的科研兴趣和探索精神,训练学生的综合实验操作技能和分析能力,培养学生的创新思维和科研能力。  相似文献   

13.
A series of novel saccharin derivatives containing 1,2,3-triazole moiety was synthesized in satisfactory yields. The structures of all the compounds were elucidated and confirmed by Fourier transform infrared(FTIR) spectroscopy, 1H and 13C nuclear magnetic resonance(1H NMR, 13C NMR) spectroscopy, and high resolution mass spectrometry(HRMS). The bioassays indicated that most of the title compounds displayed some extent herbicidal activities at 100 μg/mL.  相似文献   

14.
Upon UV irradiation in hexane at 243 K tricarbonyl-η5-cyclohexadienyl-manganese (1) and two equivalents of 2-butyne (2) or diphenylacetylene (4) yield in successive [5 + 2, 3 + 2] cycloadditions tricarbonyl-η2:2:1-1,2,3,10-tetramethyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (6), or tricarbonyl-η2:2:1-1,2,3,10-tetraphenyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (8), respectively. 3-Hexyne (3) reacts with 1 under the same conditions by successive [5 + 2, 3 + 2] cycloadditions and 1,4-H-shift to tricarbonyl-η2:2:1-1,2,3-triethyl-10-ethylidene-tricyclo[5.2.1.04,9]dec-2-en-5-yl-manganse (7). Identical products are also obtained when 1 is first irradiated in THF at 208 K and the thermolabile intermediate, dicarbonyl-η5-cyclohexadienyl-tetrahydrofurane-manganese (11), is treated with an excess of the alkynes 2–4. In contrast, bis(trimethylsily)acetylene (5) substitutes photochemically in 1 only a CO ligand to yield dicarbonyl-η5-cyclohexadienyl-η2-bis(trimethylsily)Acetylene-manganese (9). The crystal and molecular structure of 7 was determined by an X-ray diffraction analysis. Complex 7 crystallizes in the triclinic space group , a = 822.6(2) pm, B = 882.5(2) pm, C = 1344.6(2) pm, = 92.36(2)°, β = 107.13(2)°, γ = 99.71(2)°, V = 0.9152(3) nm3, Z = 2. The complexes 6–9 were studied in solution by IR and NMR spectroscopy. The structures of 6,8 and 9 were elucidated from the NMR spectra. A possible formation mechanism for the complexes 6–9 will be discussed.  相似文献   

15.
以4-甲氧基苯基-β-D-吡喃葡萄糖苷为原料,经9步反应制得新型关键中间体2,4,6-三-O-苄基-3-羰基-D-葡萄糖酸内酯乙二硫醇缩酮(10); 10与5-溴-2-氯-4′-乙氧基二苯甲烷经亲核加成反应制得甲基糖苷(12); 12在BF3·Et2O催化下经Et3SiH还原、AlCl3脱去苄基、再经PhI(CF3CO2)2氧化脱除乙二硫醇保护基合成了SGLT2抑制剂3-羰基达格列净,共13步反应,总收率9%,该合成路线包含了11个新化合物的合成,其结构经1H NMR, 13C NMR, IR和HR-ESI-MS表征。  相似文献   

16.
By using a high-resolution solid state nuclear magnetic resonance spectrometer with 27Al and 29Si probes, the interaction between Mo species and HZSM-5 of frsol|Mo/HZSM-5 catalysts has been studied. The results show that there is a strong interaction between Mo species and HZSM-5 zeolite. The framework aluminum in the zeolite can be easily extracted by the introduction of Mo species. The extractability of framework aluminum by Mo species increases with increasing Mo loading and the calcination temperature. The extraction process leads to the formation of non-framework Al at first and then a new crystalline phase of Al2(MoO4)3. The dealumination of the catalyst having a Mo loading of 15% and had been calcined at 973 K is so severe that all the aluminum in the framework are extracted and no framework Al could be detected by 27Al MAS NMR. The catalyst, therefore, lost its catalytic activity for methane dehydrogenation and aromatization in the absence of oxygen. The Si/Al ratio measured from 29Si MAS NMR further confirms the dealumination process observed by 27Al MAS NMR. The MAS NMR results give us an evidence that Al2(MoO4)3 crystallites are much less active for the reaction.  相似文献   

17.
A degradable polycation with high density of discrete charge was synthesized from tetraethylenepentamine (TEPA) and ethylene glycol diacrylate (EGDA) based on Michael addition and amidation. The cationic polymer synthesized here was denoted as PTE. Polymerization was monitored by 1H NMR spectroscopy. According to 1H NMR spectra, Michael addition proceeded more rapidly than amidation. After 6 h, there were no double bonds left, while amidation existed throughout the polymerization. In addition, when PTE was synthesized in chloroform and dichloromethane, respectively, there were some structural differences as shown by 1H NMR spectroscopy. The degradation laws of PTE in aqueous solution were studied by 1H NMR and viscosity measurements. When PTE was dissolved in deionized water, degradation proceeded in high velocity. However, in NaH2PO4 aqueous solution, degradation was slowered. Degradation at 37 °C proceeded obviously more rapidly than that at 25 °C. A certain degree of amidation facilitated the reduction of degradation velocity. The effect of concentration on degradation was not obvious. Interestingly, PTE synthesized in CHCl3 was degraded more rapidly than that in CH2Cl2.  相似文献   

18.
An easy and efficient method for the synthesis of multisubstituted cyclopropane derivatives from electron-deficicent alkenes with 2-bromo-1,3-propanedione compounds was described. For this method, ethyl α-cyanocinnamate derivatives 1 and β,β-dicyanostyrene derivatives 4 can all smoothly react with 2-bromo-1,3-propanedione compounds 2 to afford the corresponding multisubstituted cyclopropane derivatives 3 and 5 in good to excellent yields(up to 100%) promoted by anhydrous K3PO4 in DMF at room temperature, respectively. A possible mechanism of this reaction was proposed. Structures of all the products were confirmed by 1H NMR, 13C NMR and HRMS.  相似文献   

19.
The interaction between vanadium (V) and the carbohydrate β-cyclodextrin (β-CD) has been studied in aqueous solutions (pH ≈ 7.5, 298.15 K) using multinuclear NMR spectroscopy, coupled with measurements of diffusion coefficients and electrical conductivity. The transport properties of vanadate ion solutions are markedly influenced by the presence of β-CD. Data from 51V, 1H and 13C NMR spectroscopy show that these effects are due to strong interactions between this carbohydrate and vanadate due to formation of 2:1 (β-CD:vanadate) complexes. The formation of such 2:1 complexes is also supported by molecular mechanics calculations. Complexation is seen by conductometric and diffusion techniques to lead to a significant decrease in the molar conductivity and diffusion coefficient of vanadate solutions in the presence of β-CD. Using the above stoichiometry, it has been possible to calculate the association constant, leading to the value K = 4.3 × 104 M−2 from the analysis of the conductivity data.  相似文献   

20.
The condensation products of 5-methyl-3-phenyl-1H-indole-2-carbohydrazide (1) with 2-butanone, 3-pentanone and cyclopentanone were prepared. The adducts (2a-c) were characterized by microanalysis, UV, IR, 1H NMR, 13C NMR and EI mass spectrometry. 1H NMR spectra of 2a and 2b revealed rotational restriction about the C–N bond in solution (DMSO-d6) and displayed double resonances associated with the CH3 and CH2CH3 residues of the alkylidene moieties. A variable temperature 1H NMR experiment was run on 2a to overcome the rotational barriers and thus determine the coalescence temperature but no coalescence was observed up to 77 °C. The structural analysis of 2a and 2c were also carried out by single crystal X-ray diffraction and confirmed by theoretical calculations (semiempirical PM3 and ab initio RHF/6-31G(d)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号