首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微波消解–ICP–MS法测定话梅中的二氧化钛   总被引:2,自引:0,他引:2  
建立了微波消解–电感耦合等离子体质谱仪(ICP–MS)测定话梅中二氧化钛的方法。话梅样品用硝酸及过氧化氢经微波消解仪消解,将消解液除酸定容后用电感耦合等离子体质谱仪测定,以内标法测得钛的含量,并转换成样品中的二氧化钛含量。钛含量在0~500μg/kg范围内与信号强度呈良好的线性,线性相关系数r=0.999 9,检出限为0.04μg/kg。在0.06,0.15,0.30μg/kg的添加水平下,加标回收率为80%~100%,相对标准偏差为3.2%~3.9%(n=6)。该法稳定性好,测定结果准确、可靠。  相似文献   

2.
采用电感耦合等离子体发射光谱法测定锰钢中的铬、钼、磷。以盐酸–硝酸混合酸处理试样,通过选择元素的分析线来优化测试条件,利用基体匹配法消除基体干扰。结果表明,铬、钼、磷3种元素测定结果的相对标准偏差为0.86%~2.31%,加标回收率为96.7%~103.2%。该法能够满足日常分析对锰钢中铬、钼、磷含量测定的需要。  相似文献   

3.
4.
建立电感耦合等离子体原子发射光谱(ICP–AES)法测定铬镍不锈钢中锰、铬、镍、硅、磷、铜、钼7种元素含量的方法。试样用盐酸与硝酸混合酸溶液溶解,采用溶解国家标准样品的方法制备校准曲线溶液,确定了元素最佳分析谱线。各元素的含量在其测试范围内与原子发射强度呈良好的线性关系,线性相关系数不小于0.999,7种元素的检出限在0.000 3%~0.003 0%之间。该方法应用于铬镍不锈钢标准样品的测定,测定值与认定值相符,测定值的相对标准偏差在0.12%~1.15%之间(n=8)。应用于铬镍不锈钢样品测定时,加标回收率在90%~110%之间。该方法操作简便、迅速,可满足日常铬镍不锈钢中多元素含量的检测需要。  相似文献   

5.
建立ICP–AES法测定装甲材料中铌含量的的方法。采用盐酸–硝酸–氢氟酸微波消解样品,检测器为CID固态检测器,检测波长为309.417 nm。在选定的测定条件下,标准工作曲线线性范围为0.005%~1.0%,线性相关系数为0.999 7,检出限为0.000 68%,测定结果的相对标准偏差不大于3%(n=10),加标回收率为96.0%~98.7%。该方法操作简单,测定结果准确可靠,可用于装甲材料中铌含量的测定。  相似文献   

6.
建立电感耦合等离子体质谱法(ICP–MS)测定食品接触纸制品中铬、镍、砷、镉、铅、汞6种重金属含量的方法。样品经微波消解处理后用ICP–MS进行测定,内标法定量。在优化实验条件下,测定汞元素的线性范围在0~10μg/L之间,测定铅、镉、铬、镍、砷元素的线性范围在0~100μg/L之间,相关系数均大于0.999。各元素的检出限为0.001~0.1 mg/kg,加标回收率为89.3%~116.0%,测定结果的相对标准偏差为3.5%~7.9%(n=6)。该方法样品处理简单,检测灵敏度高,适用于食品接触纸制品中铬、镍、砷、镉、铅、汞的检测。  相似文献   

7.
建立微波消解–ICP–AES法测定罗布麻叶中Na,Ca,Mg,Fe,Al,P,Mn,Ni,Cu,Zn,Ti,Se,Ba,Pb,Sr,Cd 16种微量元素含量的方法。以HNO_3–H_2O_2–HF溶液(6∶4∶1)为消解体系,样品经微波消解后,用ICP–AES法对罗布麻叶中16种元素含量进行测定。各元素的质量浓度在0.01~1.00 mg/L范围内与光谱强度呈良好的线性关系,线性相关系数r>0.999,检出限在0.000 5~0.008 0 mg/kg之间。加标回收率为87.56%~101.47%,测定结果的相对标准偏差为1.2%~3.42%(n=6)。该方法操作简单,准确度好,灵敏度高,可用于罗布麻叶中微量元素分析。  相似文献   

8.
建立电感耦合等离子体质谱(ICP–MS)测定空气PM2.5中的Pb和Cd元素的分析方法。采用连续β射线–DHS PM2.5大气颗粒物浓度监测仪采集空气中的PM2.5,以智能石墨消解PM2.5滤膜样品,ICP–MS测定其中的Pb和Cd元素含量。在优化的仪器条件下,元素Pb和Cd标准曲线的线性相关系数均为0.999 9,检出限分别为0.018,0.52ng/m3,满足HJ 657–2013的要求。Pb和Cd的加标回收率分别为95.8%~101.4%,99.3%~104.9%,测定结果的相对标准偏差分别为4.20%和2.38%(n=6)。对滤膜标准样品进行了测定,测定结果与标准值一致。该方法测定结果准确、可靠,可用于测定空气PM2.5中的Pb和Cd。  相似文献   

9.
建立环形聚焦单模微波消解–电感耦合等离子体质谱法同时测定罐头食品中钒、铬、镍、镉、铅、砷、锰、铝、铜、锡金属元素的含量。采用浓硝酸消解样品,各元素分析目标物分别为Pb208,Cd111,As75,Mn55,Cu63,V51,Ni60,Sn120,Cr53,Al27。Pb208以Bi209为内标,Cd111,Sn120以In115为内标,Ni60,Cr53,V51,Mn55,Cu63,As75,Al27以Sc45为内标。各元素工作曲线线性良好,相关系数不小于0.999 5,方法检出限为0.0030~0.030μg/g,加标回收率在98.0%~104.1%之间,测定结果的相对标准偏差为1.29%~4.50%(n=6)。该方法简便快捷,灵敏度高,适合分析大批量罐头食品中多种金属元素。  相似文献   

10.
建立微波消解–ICP–OES法测定陶土中铅和镉含量的方法。采用氢氟酸–硝酸作为消解液,微波消解法处理样品,消解液定容后直接进入耐氢氟酸的进样系统,用ICP–OES法测定陶土中重金属铅和镉的含量。结果表明,Pb和Cd检出限分别为0.027μg/m L和0.011μg/m L,回收率分别为90.5%~98.8%和95.0%~98.4%,测定结果相对标准偏差分别为1.38%和2.17%(n=7)。该方法具有快速、准确、灵敏度高等优点,适用于陶土中铅和镉含量的检测。  相似文献   

11.
建立GC–ICP–MS直接进样法测定丙烯中痕量砷化氢的方法。采用GS Gaspro毛细柱进行分离,气相色谱载气流速为3.5 mL/min,分流比为6∶1,ICP–MS积分时间为0.5 s,载气流速为0.83 L/min,增敏气为含有20%(体积分数)氮气的氩气,压力为206.85 kPa。砷化氢的检出限为0.09 nL/L,在5 nL/L和80 nL/L加标水平下的回收率分别为102%和104%,测定结果的相对标准偏差小于3%(n=6)。结果表明该方法简单快速,可用于丙烯中痕量砷化氢的测定。  相似文献   

12.
微波消解/ICP MS法测定不同地点虎耳草中16种元素含量   总被引:1,自引:0,他引:1  
利用微波消解/ICP-MS法对3个地点虎耳草中16种元素进行了含量测定.结果表明,不同地点虎耳草元素的含量相差较大,虎耳草中Ca元素与海拔高度呈线性关系.该法的加样回收率在95.3%~105.0%之间,相对标准偏差在0.98%~2.82%之间,具有较高的准确度和精确度.结果为虎耳草的药效性和药理毒理提供了理论依据.  相似文献   

13.
高速工具钢为高碳高合金工具钢,常温下样品酸溶分解较为困难。本文利用微波消解提高溶样的温度和压力,在王水、氢氟酸和硫酸介质中使样品充分消解,再用饱和硼酸溶液络合过量的氢氟酸,基体匹配消除铁基体的影响,ICP-AES法同时测定锰、磷、镍、铜、铬、钒的含量。测定高速工具钢标样,测定值与标样值相吻合,本方法的精密度在0.55%~4.06%。加标回收率在95.6%~114.8%,满足测定要求。  相似文献   

14.
用微波等离子体炬 (MPT)为激发光源 ,氩气为等离子体工作气体 ,用气动雾化进样 ,研究了微波消解 微波等离子体炬原子发射光谱法 (MPT AES)测定合金钢中铜、锰、钼的方法。考察了微波功率、载气流量、工作气流量、氧屏蔽气流量等实验参数对测定铜、锰、钼的影响。对微波消解合金钢样品的消解条件进行了考察 ,建立了最佳消解程序。测定铜、锰、钼的检出限分别为 3.3、3.7和 42ng mL ,RSD(n =6)分别为 1 7%、2 .4%、3.8% ,并且测得它们的线性范围分别为0 .0 2~ 5 0 μg mL、0 .0 4~ 5 0 μg mL和 0 .2 0~ 5 0 μg mL。  相似文献   

15.
建立铅精矿、锌精矿、混合铅锌矿中铊的分析方法。试样采用盐酸、硝酸、硫酸消解,挥发除去硫,沉淀除去大部分铅和硅,用电感耦合等离子质谱(ICP–MS)法测定样品溶液中铊的含量。对基体及主要杂质元素的干扰情况及消除方法进行试验,优化了分析方法。铊含量在0.01~10μg/L的范围内具有良好的线性关系,线性相关系数大于0.999 9,检出限为0.001 8μg/L。测定结果的相对标准偏差为1.42%~3.96%(n=11),加标回收率为92.7%~106.8%。该方法简单、快速、准确,可用于铅锌精矿、混合铅锌矿中铊的测定。  相似文献   

16.
建立电感耦合等离子体发射光谱法同时测定镍钼中间合金中Mo,Fe,Al,Si,P元素含量的方法。样品用15 m L盐酸–硝酸–水溶液(体积比1∶1∶1)溶解。对共存元素进行了干扰试验,采用基体匹配法消除基体的影响,确定了Mo,Fe,Al,Si,P元素最佳分析谱线分别为202.095,176.641,238.204,288.158,178.287 nm。测定Mo,Fe,Al,Si,P的线性范围分别为250.0~350.0,0.006 6~5.0,0.09~1.0,0.066~1.0,0.130~0.30 mg/L,线性相关系数r≥0.999 5,上述5种元素的检出限为0.002~0.04 mg/L,加标回收率为95.0%~110.0%,测定结果的相对标准偏差小于4.55%(n=11)。该方法简便、快速、准确,满足镍钼中间合金日常生产的检测要求。  相似文献   

17.
采用微波方法消解催化剂样品,设计正交实验研究了压力、消解时间、微波功率和酸度对消解效果的影响,并通过显著性实验对影响因素进行了分析,最终确定了微波消解催化剂样品的最佳工作参数.建立了用微波消解-原子吸收光谱法测定催化剂中铜、铁、镍、钠的方法,其测定结果的相对标准偏差分别为(n=5)≤2.3%,≤2.9%,≤2.0%,≤2.3%;加标回收率分别为95.9%~104.7%,96.1%~104.1%, 97.0%~103.8%, 96.5%~104.6%;相对标准偏差和加标回收率均优于常规法.该法样品用量少,省时,省酸,操作简单,减少环境污染.  相似文献   

18.
建立石墨消解–火焰原子吸收光谱法测定土壤和沉积物中铜、锌、镍、铬4种重金属的含量。采用盐酸–硝酸–氢氟酸–高氯酸作为消解体系对样品进行消解,铜、锌、镍以1%硝酸定容,铬以3%盐酸定容,采用火焰原子吸收光谱仪进行测定。铜、锌、镍、铬的质量浓度在0.00~1.00 mg/L范围内与吸光度均呈良好的线性关系,相关系数为0.999 4~0.999 5,方法检出限为0.7~1.5μg/g。测定结果的相对标准偏差为1.8%~3.4%(n=6),样品加标回收率为92.0%~105%。土壤和沉积物标准样品的测定值均在标准值可接受范围内。该方法操作简单、快速,结果准确、可靠,适用于土壤和沉积物样品中铜、锌、镍、铬等金属元素的测定。  相似文献   

19.
建立微波消解–电感耦合等离子体发射光谱法测定高铬合金铸铁中的铬、锰、硅、磷4种元素的分析方法。以盐酸–硝酸–氟酸(体积比为6∶2∶1)混合酸为溶剂,采用程序升温微波消解法分解样品。电感耦合等离子体发射光谱仪工作条件:激发功率为1 300 W,等离子气流量为12 L/min,雾化气流量为0.7 L/min,辅助气流量为1.0 L/min。标准曲线外标法定量。铬、锰、硅、磷的质量浓度分别在150~200、0.02~10.0、0.05~10.0、0.07~0.5 mg/L范围内与光谱强度具有良好的线性关系,相关系数均不小于0.999 7。锰、硅、磷元素的检出限分别为0.002%、0.005%、0.007%。样品加标回收率为97.7%~104.5%,测定结果的相对标准偏差均为0.29%~1.31%(n=7)。该方法快速、准确,满足高铬合金铸铁中铬、锰、硅、磷的检测要求。  相似文献   

20.
采用悬浮液直接进样电感耦合等离子体发射光谱法(ICP–OES)测定高纯氢氧化铝中铁、钛、硅、铬的含量。悬浮液用电磁搅拌器搅拌,均匀地分散在溶液中,通过仪器蠕动泵进入雾化室,均匀无阻地导入ICP光源。Fe,Ti,Si,Cr的分析谱线分别为259.940,336.112,251.611,205.552 nm;RF功率为1 300W,等离子体气流量为13.0 L/min,雾化器气体流量为0.60 L/min,辅助气流量为1.00 L/min。Fe,Ti,Si,Cr的质量浓度分别在0.0~30.0,0.0~15.0,0.0~90.0,0.0~15.0μg/m L范围内与信号强度呈良好的线性,线性相关系数均大于0.999,方法的检出限为0.027 6~0.993 9μg/m L,测量结果的相对标准偏差为0.65%~6.84%(n=11),回收率为95.0%~104.8%。该法抗干扰能力强、线性范围宽,适用于高纯氢氧化铝中铁、钛、硅、铬含量的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号