首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
采用SST k-w低雷诺数湍流模型对加热条件下超临界压力CO2在内径di=22.14 mm,加热长度Lh=2440 mm水平圆管内三维稳态流动与传热特性进行了数值计算.通过超临界CO2在水平圆管内的流动传热实验数据验证了数值模型的可靠性和准确性.首先,研究了超临界压力CO2在水平圆管内的流动传热特点,基于超临界CO2在类临界温度Tpc处发生类液-类气“相变”的假设,揭示了水平圆管顶母线和底母线区域不同的流动传热行为.然后,分析了热流密度qw和质量流速G对水平圆管内超临界压力CO2流动换热的影响,通过获取流体域内的物性分布、速度分布和湍流分布等详细信息,重点解释了不同热流密度qw和质量流速G下顶母线内壁温度Tw,i分布产生差异的传热机理,分析结果确定了类气膜厚度d、类气膜性质、轴向速度u和湍动能k是影响顶母线壁温分布差异的主要因素.研究结果可以为超临界压力CO2换热装置的优化设计和安全运行提供理论指导.  相似文献   

2.
A finite total number of flow parameters in the wall region of a turbulent boundary layer points to universal behavior of turbulent shear stress as a function of mean-velocity gradient and turbulent heat flux as a function of both mean-velocity and mean-temperature gradients. Combined with dimensional arguments, this fact is used to reduce the momentum and heat equations to first-order ordinary differential equations for temperature and velocity profiles amenable to general analysis. Scaling laws for velocity and temperature in boundary layer flows with transpiration are obtained as generalizations of well-known logarithmic laws. Scaling relations are also established for shear stress and rms transverse velocity fluctuation. The proposed method has substantial advantages as compared to the classical approach (which does not rely on fluid-dynamics equations [1–3]). It can be applied to establish scaling laws for a broader class of near-wall turbulence problems without invoking closure hypotheses.  相似文献   

3.
绕圆柱体自由表面磁流体流动和传热的研究   总被引:1,自引:0,他引:1  
本文对在不同雷诺数下,绕圆柱体的磁流体自由表面流动及传热进行了模拟,分析了磁场对绕流圆柱尾迹和涡分离的影响,获得了两种雷诺数下的电磁力密度、流场和温度场分布。结果表明,磁场不仅影响了流动的形态,而且对湍流有抑制作用,降低了自由表面的更新机制,从而减少了传热能力;在相同的Hartmann数下,相比低雷诺数下的流动换热情况,高雷诺数下的湍流不能被完全抑制,自由表面与尾迹的相互作用也较强,因而自由表面换热也较强。  相似文献   

4.
In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.  相似文献   

5.
发汗冷却换热过程的实验研究与数值模拟   总被引:5,自引:0,他引:5  
本文对水平矩形槽道内湍流对流换热与发汗冷却进行了实验研究和数值模拟。实验结果表明:随着冷却气体流量的增加,发汗冷却壁面温度、局部对流换热系数和Nu数都迅速下降;在注入率为1%时,壁温下降了约40%,对流换热系数降低至50%左右。随着注入率的增大,壁面热流先是增加,在F=0.7%-0.8%左右时达到一个最大值,随后下降。St/St0随着注入率的增大而降低; St/St0的实验值与由已有关联式以及数值计算得到的值基本吻合。  相似文献   

6.
S. Tardu  O. Doche 《显形杂志》2008,11(4):285-298
The effect of blowing through a localized slot on the wall turbulence dynamics and heat transfer process is analyzed by direct numerical simulations in a fully developed turbulent channel flow. The severity parameter is mild and there is no flow separation induced by the blowing. The shear stress transport and temperature energy budget is discussed in detail. The wall shear and flux decreases immediately downstream the slot in a similar manner but the Reynolds analogy does not hold over the slot. The physical process is governed by the production and pressure redistribution over the slot in a complex manner. The turbulent transport and especially the advection play an essential role in the heat transfer mechanism.  相似文献   

7.

An experimental study has been conducted to find the heat transfer characteristics of methane/air flames impinging normally to a flat surface using different burner geometries. The burners used were of nozzle, tube, and orifice type each with a diameter of 10 mm. Due to different exit velocity profiles, the flame structures were different in each case. Because of nearly flat velocity profile, the flame spread was more in case of orifice and nozzle burners as compared to tube burner. Effects of varying the value of Reynolds number (600–2500), equivalence ratio (0.8–1.5) and dimensionless separation distance (0.7–8) on heat transfer characteristics on the flat plate have been investigated for the tube burner. Different flame shapes were observed for different impingement conditions. It has been observed that the heat transfer characteristics were intimately related to flame shapes. Heat transfer characteristics were discussed for the cases when the flame inner reaction cone was far away, just touched, and was intercepted by the plate. Negative heat fluxes at the stagnation point were observed when the inner reaction cone was intercepted by the plate due to impingement of cool un-burnt mixture directly on the surface. Different heat transfer characteristics were observed for different burner geometries with similar operating conditions. In case of tube burner, the maximum heat flux is around the stagnation point and decay is faster in the radial direction. In case of nozzle and orifice burner, the heat transfer distribution is more uniform over the surface.  相似文献   

8.
本文利用实施给定热流边界条件的DSMC方法,对短通道内给定壁面热流边界条件下的气体换热情况进行了模拟.结果表明,壁面热流密度增大导致通道内压力分布非线性程度增加.随着热流密度的增大,截面速度分布趋于平缓,滑移速度增大.给定热流密度的通道壁面温度与气流截面平均温度的差值沿程增大,温度梯度沿程下降,气体稀薄性增大时,通道换热减弱.  相似文献   

9.
Fluid flow and heat transfer characteristics of single-phase flows in microchannels for refrigerant R-134a were experimentally investigated. Experiments were conducted using rectangular channels micromilled in aluminum with hydraulic diameters ranging from approximately 112 to 210 w m and aspect ratios that varied from 1.0 to 1.5. Using overall temperature, flow rate, and pressure drop measurements, friction factors and convective heat transfer coefficients were experimentally determined for steady flow conditions. Effects of Reynolds number, relative roughness, and channel aspect ratio are examined in predicting friction factor and Nusselt number for the experiments. Experiment results indicated that transition from laminar to turbulent flow occurred between a Reynolds number of 2,000 and 4,000. Friction factor results were consistently lower than values predicted by macroscale correlations but exhibited the same trends with Reynolds numbers of macroscale correlations. Nusselt number results also exhibited a similar pattern of lower values obtained in the experiments than those predicted by commonly used macroscale correlations. Nusselt number results also indicated that channel size may suppress turbulent convective heat transfer and surface roughness may affect heat transfer characteristics in the turbulent regime.  相似文献   

10.
A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.  相似文献   

11.
In the present work, conjugate heat transfer in a rectangular cavity with a heated moving lid is investigated using the lattice Boltzmann method (LBM). The simulations are performed for incompressible flow, with Reynolds numbers ranging from 100 to 500, thermal diffusivity ratios ranging from 1 to 100, and Prandtl numbers ranging from 0.7 to 7. A uniform heat flux through the top of the lid is assumed. Results show that LBM is suitable for the study of heat transfer in conjugate problems. Effects of the Reynolds number, the Prandtl number and the thermal diffusivity ratio on hydrodynamic and thermal characteristics are investigated and discussed. The streamlines and temperature distribution in flow field, dimensionless temperature and Nusselt number along the hot wall are illustrated. The results indicate that increase of thermal diffusivity yields the removal of a higher quantity of energy from lid and its temperature decreases when increasing the Reynolds and the Prandtl numbers.  相似文献   

12.
C. Saha  R. Ganguly  A. Datta 《实验传热》2013,26(3):169-187
Flame impingement heat transfer has widespread industrial and domestic applications and attaining high heat flux as well as low emission of pollutants is the important prerequisite for all such applications. In this article, the heat transfer and emission characteristics of a laminar flame jet impinging on a flat target plate have been investigated experimentally. The effect of reactant jet Reynolds number, equivalence ratio and burner to plate separation distance on the average heat flux, and emissions of CO and NOx are studied using methane and ethylene fuels. Results indicate that the heat flux is maximized under certain operating conditions of jet Re, equivalence ratio, and separation distance between the burner and the target. Fuel type is found to have an effect on the heat transfer rate because of the varying luminosity of the flame with different fuels. Operating regimes that produce lower emission of pollutants are also identified. Findings of this article have direct industrial relevance to flame impingement heat transfer applications that have small target plate-to-burner port diameter ratios.  相似文献   

13.
微结构表面封闭式喷雾冷却传热特性   总被引:3,自引:2,他引:1       下载免费PDF全文
以蒸馏水为工质,在闭式循环喷雾冷却系统上,变化喷雾流量,研究了表面几何结构对喷雾传热性能的影响。从对流换热和相变换热比例关系的角度,对喷雾换热机理进行了实验研究。结果表明:与光滑表面相比,微结构表面可明显增强喷雾换热强度,这主要归因于相变换热的增强。表面温度较低时,直肋面换热效果最好 ;增大流量,光面换热增强,而直肋面变化不明显。表面温度较高时,方肋面换热效果最好;随着流量增大,所有面换热均增强。对于微结构表面,相变换热份额均大于50%,故而以相变换热为主;而光滑表面,即使在温度较低时,相变换热份额也大于20%。临界热流密度与三相接触线长度正相关,流量为15.9 mL/min时,方肋面、直肋面和光面的临界热流密度依次为159.1,120.2,109.8 W/cm2,蒸发效率分别为96.0%,72.5%,67.1%。  相似文献   

14.
旋转射流冲击换热液晶显示实验研究   总被引:7,自引:0,他引:7  
采用热色液晶测温技术对以二氧化碳为工质的稳态射流冲击换热和管内插入扭转带方式的旋转射流冲击换热进行了实验研究。与普通射流相比,旋转射流导致驻点附近区域的换热趋于均匀化。其换热系数在大于某一半径之后高于普通射流,但在驻点附近相对较低。旋转射流对换热的此种影响随雷诺数的增大而减弱。  相似文献   

15.
厚翅片管内流体流动和传热的数值分析   总被引:4,自引:0,他引:4  
本文应用Patankar等人[1]研究薄翅片管的湍流模型,对一种工业化的厚翅片管内的流体流动和传热进行了数值分析。计算范围包括了层流和湍流(Re=101~106),所得计算结果与较窄范围内实验所测的传热与阻力数据相当符合,本计算结果具有较大的推广价值。  相似文献   

16.
This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.  相似文献   

17.
Direct Numerical Simulation (DNS) data on high pressure H2/O2 and H2/air flames using the compressible flow formulation, detailed kinetics, a real fluid equation of state, and generalised diffusion are analysed. The DNS is filtered over a range of filter widths to provide exact terms in the Large Eddy Simulation (LES) governing equations, including unclosed terms. The filtered pressure and the filtered heat flux vector are extensively compared with the pressure and the heat flux vector calculated as a function of the filtered primitive variables (i.e. the exact LES term is compared with its form available within an actual LES). The difference between these forms defines the subgrid pressure and the subgrid heat flux vector. The analyses are done both globally across the entire flame, as well as by conditionally averaging over specific regions of the flame; including regions of large subgrid kinetic energy, subgrid scalar dissipation, subgrid temperature variance, flame temperature, etc. In this work, although negligible for purely mixing cases, the gradient of the subgrid pressure is shown to be of the same order as, and larger than, the corresponding divergence of the turbulent subgrid stresses for reacting cases. This is despite the fact that all species behave essentially as ideal gases for this flame and holds true even when the ideal gas law is used to calculate the pressure. The ratio of the subgrid pressure gradient to the subgrid stress tensor divergence is shown to increase with increasing Reynolds number. Both the subgrid heat flux vector and its divergence are found to be substantially larger in reacting flows in comparison with mixing due to the associated larger temperature gradients. However, the divergence of the subgrid heat flux vector tends to be significantly smaller than other unclosed terms in the energy equation with decreasing significance with increasing Reynolds number.  相似文献   

18.
In this article, distilled water and CuO particles with volume fraction of 1%, 2% and 4% are numerically studied. The steady state flow regime is considered laminar with Reynolds number of 100, and nano-particles diameters are assumed 20 nm and 80 nm. The hydraulic diameter and the length of equilateral triangular channel are 8 mm and 1000 mm, respectively. The problem is solved for two different boundary conditions; firstly, constant heat flux for all sides as a validation approach; and secondly, constant heat flux for two sides and constant temperature for one side (hot plate). Convective heat transfer coefficient, Nusselt number, pressure loss through the channel, velocity distribution in cross section and temperature distribution on walls are investigated in detail. The fluid flow is supposed to be one-phase flow. It can be observed that nano-fluid leads to a remarkable enhancement on heat transfer coefficient. Furthermore, CuO particles increase pressure loss through the channel and velocity distribution in fully developed cross section of channel, as well. The computations reveal that the size of nano-particles has no significant influence on heat transfer properties. Besides, the study shows a good agreement between provided outcomes and experimental data available in the literature.  相似文献   

19.
Local heat transfer coefficients from a flat plate to a pair of circular air impinging jets are investigated experimentally, A pair of well-controlled, fully developed circular air impinging jets at room temperature are used in the experiments. The experimental method in this investigation is the transient liquid-crystal technique. During the experiments, the surface liquid-crystal color distribution of the test plate is recorded using a video imaging acquisition system, and the color information is translated into a surface temperature distribution through a digital color image processing unit. Local heat transfer coefficients art obtained using a surface transient heat conduction analysis. The flow Reynolds number of the jet is kept at 23,000. The jet-to-plate distance and the jet-to-jet spacing are varied in the experiment. Detailed radial heat transfer distributions at different radial directions are obtained and analyzed for L/D = 2, 4, 6, 8, and 10. The effect of jet spacing distance (S/D =1.75, 3.5,5.25, 7.0) is analyzed by comparing to data obtained from a single jet with similar flow configurations.  相似文献   

20.
段毅  杨永 《计算物理》2006,23(3):355-360
系统研究了几种混合通量差分格式的构造方法和耗散模型,分别对低速平板绕流、二维跨音速喷管流动和高超音速钝头体无粘绕流进行了数值模拟,结合先进的EASM湍流模型对格式的粘性分辨率和激波稳定性进行了细致的比较分析.结果表明混合通量差分格式兼顾了FDS和FVS格式的优点,具有较高的间断分辨率和数值稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号