首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The metal complexes of N, N′‐bis (o‐hydroxy acetophenone) propylene diamine (HPPn) Schiff base were supported on cross‐linked polystyrene beads. The complexation of iron(III), copper(II), and zinc(II) ions on polymer‐anchored HPPn Schiff base was 83.4, 85.7, and 84.5 wt%, respectively, whereas the complexation of these metal ions on unsupported HPPn Schiff base was 82.3, 84.5, and 83.9 wt%. The iron(III) complexes of HPPn Schiff base were octahedral in geometry, whereas copper(II) and zinc(II) ions complexes were square planar and tetrahedral. Complexation of metal ions increased the thermal stability of HPPn Schiff base. Catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in the presence of hydrogen peroxide. The polymer‐supported HPPn Schiff base complexes of iron(III) ions showed 73.0 wt% conversion of phenol and 90.6 wt% conversion of cyclohexene at a molar ratio of 1:1:1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 63.8 wt% conversion for phenol and 83.2 wt% conversion for cyclohexene. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 93.1 and 98.3 wt%, respectively with supported HPPn Schiff base complexes of iron(III) ions but was lower with HPPn Schiff base complexes of copper(II) and zinc(II) ions. Activation energy for the epoxidation of cyclohexene and phenol conversion with unsupported HPPn Schiff base complexes of iron(III) ions was 16.6 kJ mol?1 and 21.2 kJ mol?1, respectively, but was lower with supported complexes of iron(III) ions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Copper(II) and zinc(II) complexes of Schiff bases obtained by condensation of amoxicillin and cephalexin with salicylaldehyde/pyridoxal were prepared and characterized by microanalytical, thermogravimetric, magnetic and spectroscopic data. All the complexes were found to be six‐coordinate and containing two water molecules. The electron paramagnetic resonance spectral lines exhibited rhombic distortion from axial symmetry, with g|| > g? > ge, in the copper(II) complexes. The geometry of the zinc(II) complexes appears to be octahedral. All the compounds under investigation showed antibacterial activity. The antibacterial activity showed the following trend: copper(II) complexes > zinc(II) complexes > Schiff base ligands > parent drugs. The copper(II) complexes with the Schiff bases derived from cephalexin showed substantially enhanced activity against Pseudomonas aeruginosa compared with the parent drug. All the copper complexes were also found to be active against kaolin paw oedema, whereas the parent drugs were inactive. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The coordination modes of copper(II) complexes of Schiff base-derived coumarin ligands, which had previously shown good anti-Candida activity, were investigated by pH-potentiometric and UV-Vis spectroscopic methods. These studies confirmed the coordination mode of the ligands to be through the N of the imine and deprotonated phenol of the coumarin-derived ligand in solution. In addition, the more active complexes and their corresponding ligands were investigated in the presence of copper(II) in liquid and frozen solution by ESR spectroscopic methods. A series of secondary amine derivatives of the Schiff base ligands, were isolated with good solubility characteristics but showed little anti-Candida activity. However, cytotoxicity studies of the secondary amines, together with the copper complexes and their corresponding ligands, against human colon cancer and human breast cancer cells identified the chemotherapeutic potential of these new ligands.  相似文献   

4.
将一系列苯并-10-氮杂-15-冠-5或吗啉基取代的不对称双Schiff碱配合物作为催化剂,在常压和120℃条件下用于催化氧化对二甲苯研究。探讨了Schiff配合物中心金属离子、Schiff碱配体中挂接的氮杂冠醚环、配体芳环上取代基等对催化氧化对二甲苯反应活性及其氧化产物选择性的影响。实验结果表明:配合物中氮杂冠醚的存在能显著缩短反应诱导期、提高催化活性和选择性;Schiff碱Mn(Ⅲ)配合物比Schiff碱Co(Ⅱ)和Schiff碱Cu(Ⅱ)具有更高的催化活性;氮杂冠醚Schiff碱Mn(Ⅲ)配合物催化氧化二甲苯的转化率和产物选择性分别达75%和90%。  相似文献   

5.
Some binary and ternary novel complexes of dioxouranium(VI) with 8-hydroxy-7-quinolinecarboxaldehyde (OXH) have been prepared and characterized by elemental analyses, magnetic susceptibility measurements and spectral studies. Coordination effects on the vibrational spectra of the ligands have been investigated. The amine exchange reactions of coordinated Schiff bases in these complexes have been also studied, which reveal symmetrical tetradentate Schiff base complexes. Metal exchange reaction of dioxouranium(VI) complexes was obtained when reacted with tetradentate Schiff base complexes of Cu(II) with ZrCl(4)/UO(2)(CH(3)COO)(2) giving heterobinuclear complexes. Magnetic, electronic and IR spectral data suggest the configurations of distorted square planar ligand field copper(II) complexes. The ligands behave as bi-(O,O) and tetradentate (N(2),O(2)) donors. El-Sonbati equation has been used to evaluate the symmetric stretching frequency from which the F(U-O) and F(UO,UO)(-) were calculated. The bond distances of these complexes were also investigated.  相似文献   

6.
A new kind of nano‐chitosan Schiff‐base Cu complexes with particle sizes of 350 nm were prepared by combination of nano‐chitosan, Cu and Schiff‐base, and characterized by FT‐IR spectra, TEM, DLS and elemental analysis. The modes and mechanism of interaction of the copper complexes with DNA were studied by the fluorescent probe method and electrophoresis analysis. The results suggest that the Cu complexes bound to DNA by electrostatic and intercalation modes. The anticancer activity of the Cu complexes was evaluated by Sulforhodamine B (SRB) assay in vitro. Nano‐chitosan and their Schiff‐base Cu complexes inhibited the growth of the liver cancer cell lines SMMC‐7721 in vitro. The inhibition rate of Schiff‐base Cu complexes was higher than that of nano‐chitosan. Nano‐chitosan combining with Schiff‐base and Cu improved their anticancer activity, which ascribed to the synergistic effect between the chitosan matrix and the planar construction of the Cu complexes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Reactions of L-methionine, L-serine, and L-valine with 5-substituted-2-hydroxybenzene-1,3-dicarbaldehydes gave a series of chiral Schiff base pincer ligands which were reduced to the corresponding diamines. The new Schiff base ligands reacted with copper(II) chloride to form dinuclear copper complexes which were found to be capable of recognizing tyrosine enantiomers in aqueous solution. The structure of the complexes was determined on the basis of their spectral parameters.  相似文献   

8.
Two new Schiff base ligands with chromone moiety and their transition metal complexes were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conductance and TGA analyses, FT IR, UV-Vis, NMR and mass spectroscopy. All the complexes synthesized have been investigated as functional models for catechol oxidase (catecholase) activity by employing 3,5-di-tert-butylcatechol as a model substrate. The two mononuclear copper(II) and two mononuclear iron(II) complexes show catecholase activity with turnover (kcat) numbers lying in the range 27.2–1328.4 h?1. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics and iron(II) complexes were found to have higher catalytic activity than those of copper(II) complexes. Electron-donating substituent on Schiff base ligand enhanced the catalytic activity of metal complexes while the electron-withdrawing substituent led to a decrease in activity. The electrochemical properties of two Schiff bases and their metal complexes were also investigated by Cyclic Voltammetry (CV) using glassy carbon electrode (GCE) at various scan rates. Electrochemical processes of all the compounds were observed as irreversible.  相似文献   

9.
The functionalized calix[4]pyrrole meso-substituted Schiff bases were conveniently prepared by fourstep synthetic route. Furthermore, the nickel and copper complexes of calix[4]pyrrolemeso-substituted Schiff base with 1:2 stoichiometry were obtained. The crystal structures of the calix[4]pyrroles and their metal complexes were determined by X-ray diffraction.  相似文献   

10.
Several pillared clays were prepared by using a polyalcohol (ethylene glycol or poly(vinyl alcohol)) or a poly(ethylene oxide) surfactant as an interlayer gallery template and an aluminum oligomer species as the pillaring agent. The use of polyalcohols or nonionic surfactants, such as Tergitol, gave materials which, in general, presented larger basal spacing than those found for the solids prepared by a similar procedure but without additives. The initial positive effect in the expansion of the clay interlayers was not totally retained after calcination of the materials; most probably, at the end, the basal spacing is still ruled by the intercalating aluminum species. The pillared clay with the largest basal spacing and specific surface area was used to encapsulate copper(II) complexes with pentadentate N3O2 Schiff base ligands derived from copper(II) acetylacetonate by in situ synthesis. The characterization made (X-ray diffraction, X-ray photoelectron spectroscopy, FTIR spectroscopy, chemical analysis, and low-temperature N2 adsorption) provided evidence that copper(II) complexes with pentadentate N3O2 Schiff base ligands were efficiently entrapped within the lower dimension pores of the pillared clay and that they interact strongly with the pillared clay matrix.  相似文献   

11.
New copper(II), zinc(II) and nickel(II) Schiff base complexes derived from 2,3-diaminopyridine (DAPY) and selected aldehydes, namely salicylaldehyde (SalH), 4-hydroxybenzaldehyde (4-OHBenz) and 4-nitrobenzaldehyde (4-NO2Benz), and one mixed Schiff base, DAPY-{4-OHBenz}{SalH} were prepared and characterized by a combination of elemental analyses, i.r. and n.m.r. spectra, and magnetic susceptibility measurements. The Schiff bases and some of the metal complexes display antibacterial properties.  相似文献   

12.
Nickel(II), copper(II), and zinc(II) complexes with the Schiff base obtained from isonitroso-2-acetylnaphthalene and 1,2-phenylenediamine were synthesized. The compounds were characterized by elemental analyses, FT-IR, UV-Vis, and 1H and 13C NMR spectra, conductance measurements, magnetic susceptibility measurements, and thermal analysis. The results suggest tetradentate coordination of the symmetrical Schiff base ligand through the two oxime oxygen atoms and two azomethine nitrogen atoms. The molar conductance data showed that the synthesized complexes are non-electrolytes.  相似文献   

13.
New nickel(II) and copper(II) complexes with unsymmetrical Schiff bases derived from aromatic 2-hydroxy aldehydes were synthesized and characterized by elemental analyses, melting points, 1H-NMR, magnetic susceptibility, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared (IR), and electronic spectral measurements. Comparison of IR spectra of the Schiff bases and their metal complexes indicated that the Schiff bases are tetradentate, coordinated via the two azomethine nitrogens and the two phenolic oxygens. Magnetic moments and electronic spectral data confirm square-planar geometry for the complexes. Thermal studies reveal a general decomposition pattern, whereby the complexes decomposed partially in a single step due to loss of part of the organic moiety. A single endothermic profile, corresponding to melting point, was observed from the DSC of all complexes, except those whose ligand contained the nitro group, which decomposed exothermally without melting. The Schiff bases and their complexes were screened in vitro against 10 human pathogenic bacteria. The metal(II) complexes exhibited higher antibacterial activity than their corresponding Schiff bases.  相似文献   

14.
M.Akbar Ali  R.N. Bose 《Polyhedron》1984,3(5):517-522
New nickel(II), copper(II), cobalt(III) and rohdium(III) complexes of two Schiff base ligands formed by condensation of furfural and benzil with S-benzyldithiocarbazate have been synthesized and characterized by elemental analysis and magnetic and spectroscopic measurements. The nickel(II) complexes, Ni(NS)2 and Ni(ONS)2 (NS and ONS stand for the uninegatively charged furfural and benzil Schiff bases, respectively) are square-planar and octahedral, respectively. The Cu(NS)Cl complex is paramagnetic with a magnetic moment fo 1.73 B.M. A halogen-bridged dimeric structure is proposed for this complex. The copper(II) complex, Cu(ONS)Cl is diamagnetic, suggesting strong antiferromagnetic interactions between a pair of copper(II) ions in a thiolo sulphur-bridged dimeric or polymeric structure. Cobalt(II) ions are oxidized in the presence of the Schiff bases with the concomitant formation of cobalt(III) complexes of empirical formulae, Co(NS)3, Co(ONS)2ClO4 and Co(ONS)2Cl, respectively, which are spin-paired and octahedral. The rhodium(III) complex of the furfural Schiff base, Rh(NS)2Cl is tentatively assigned a halogen-bridged dimeric structre.  相似文献   

15.
Summary Tri-and quadri-dentate Schiff bases have been synthesized from the reaction of dehydroacetic acid with diamines, aminoacids, aminophenols and aminoalcohols. The copper(II) and some nickel(II) and palladium(II) chelates of these ligands as well as copper(II) complexes of bidentate Schiff bases of dehydroacetic acid with anilines have been prepared and characterised by electronic, i.r. and n.m.r. spectral measurements and magnetic moments.  相似文献   

16.
Summary Nickel(II) and copper(II) complexes of Schiff bases derived from salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2,4-dihydroxybenzaldehyde, 2,3-dihydroxybenzaldehyde or 5-chlorosalicylaldehyde and 8-aminoquinoline have been prepared and characterized. Several of the complexes are thermochromic in the solid state. The origin of the thermochrornism is discussed in terms of changes in ligand field strength and coordination geometry. These changes were studied by means of thermal and spectral methods.  相似文献   

17.
Cu(II) complexes with Schiff bases DMIIMP, DMIIMBD, DMIIMBP, DMIIMCP, DMIIMMP, and DMIIMNP (see Introduction for definitions) are derived from condensation of 3,4-dimethyl 5-amino-isoxazole with salicylaldehyde and substituted salicylaldehydes. The newly synthesized ligands were characterized by IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The Cu(II) complexes were characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, thermogram, DTA, and single crystal analysis. The complexes have general formula [M(L)2]. The Schiff bases are bidentate coordinating through the azomethine nitrogen and phenolic oxygen of salicylaldehydes. Based on the analytical and spectral data, four-coordinate geometry is assigned for all the complexes. ESR and single crystal analysis suggests square planar geometry for all complexes. [Cu(DMIIMP)2] crystallizes in the orthorhombic system. Antimicrobial studies of Schiff bases and their metal complexes show significant activity with the metal complexes showing more activity than corresponding Schiff bases. Cytotoxicity of the copper complexes on human cervical carcinoma cells (HeLa) was measured using the Methyl Thiazole Tetrazolium assay.  相似文献   

18.
《印度化学会志》2021,98(1):100004
As resource- and time-saving and environmentally friendly synthetic methods than conventional one in a solution, microwave, and wet mechanochemical synthesis are tested for l-amino acid derivative Schiff base copper(II) complexes. Herein, we systematically compared efficiency (low-temperature, time, and yield (if possible to detect)) for both conventional solution method and microwave or mechanochemical methods. The wet mechanochemical synthesis promoted fast reaction (typically 20 ​min by mechanochemical vs 4 ​h by conventional) by a little amount of solvent for preparations of amino acid derivative Schiff base copper(II) complexes. New crystal structure of a five-coordinated square pyramidal copper(II) complex as one of the products of microwave method was also reported.  相似文献   

19.
The Schiff bases derived from 3,4-dimethyl-Δ3-tetrahydrobenzaldehyde or 4,6-dimethyl-Δ3-tetrahydrobenzaldehyde and glycine and their complexes with nickel (II) and copper (II) were synthesized and investigated. All compounds were characterized by elemental analyses, conductivity measurements, and FT-IR spectroscopy. The Schiff base ligands and their complexes were further characterized by 1H NMR. The results suggest that the Schiff base acts as a bidentate ligand, which bonds to the metal ions through the imino nitrogen and carboxylate oxygen. The potassium salts of the Schiff bases are 1 : 1 electrolytes but all the complexes are nonelectrolytes. The article was submitted by the authors in English.  相似文献   

20.
New Schiff base complexes of zinc(II), copper(II), nickel(II), and vanadium(IV) were synthesized using the Schiff base ligand formed by the condensation of 2-aminoethanethiol and 2-hydroxy-1-naphthaldehyde. The tetradentate Schiff base ligand N,N´-(3,4-dithiahexane-1,6-diyl)bis(2-hydroxy-1-naphthaleneimine), containing a disulfide bond, was coordinated to the metal(II) ions through the two azomethine nitrogen atoms and two deprotonated phenolic oxygens of two different ligands which was connected to each other by sulfur-sulfur bond. The molar conductivity values of complexes in DMSO solvent implied the presence of nonelectrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were studied in dimethylsulfoxide. The Schiff base ligand and its complexes were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of tetradentate Schiff base ligand was characterized by single crystal X-ray diffraction. The Schiff base ligand was contained disulfide bond. Furthermore, the binding interaction of these complexes with calf thymus DNA (CT-DNA) was investigated by different methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号