首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
马欲飞  何应  于欣  于光  张静波  孙锐 《物理学报》2016,65(6):60701-060701
采用石英增强光声光谱(QEPAS)技术对CO痕量气体展开检测研究. 为了实现超高灵敏度探测, 采用输出波长为4.6 μm的新颖中红外高功率分布反馈量子级联激光器为光源, 实现了对CO气体基频吸收带的激发与测量. 在优化了调制深度、气体压强和提高了CO分子的振动-转动弛豫速率后, 获得了1.95 ppbv的优异探测极限. 在分析检测结果的过程中, 讨论了能级寿命对信号强度的影响, 并对QEPAS信号强度的表达式进行了修正.  相似文献   

2.
光纤倏逝波型石英增强光声光谱技术   总被引:1,自引:0,他引:1       下载免费PDF全文
何应  马欲飞  佟瑶  彭振芳  于欣 《物理学报》2018,67(2):20701-020701
采用块状光学准直聚焦透镜组的传统石英增强光声光谱(QEPAS)技术存在体积难以缩减,结构稳定性不佳,无法适应空间狭小、振动复杂的特殊环境等缺点.基于此,将光纤倏逝波技术与QEPAS技术相结合,提出了一种新型微纳结构光纤QEPAS痕量气体检测技术.实验中,为了提高QEPAS系统信号幅值,优化了石英音叉与激光束的空间位置、激光波长调制深度,同时对比了两种不同共振频率的石英音叉,最终采用共振频率较低的30.720 kHz石英音叉作为声波探测元件,获得的检测极限为6.25×10~(-4)(体积分数),归一化噪声等效吸收系数为4.18×10~(-7)cm~(-1).W·Hz~(-1/2).  相似文献   

3.
为进一步提升多组分痕量气体检测灵敏度,设计了一套光纤光声传感系统。系统主要集成了2个近红外DFB激光器、近红外宽带光源、高速光谱模块、现场可编程逻辑门阵列信号采集与处理电路,具有激光调制控制、光声信号解调和数字锁相放大等功能。利用声学共振腔和干涉型光纤声波传感器对光声信号进行激发增强和探测增强,实现了乙炔和甲烷气体的高灵敏度检测。光纤声波传感器中以微机电系统悬臂梁作为声学敏感元件,设计了光纤法布里-珀罗干涉结构,将悬臂梁偏转位移转换为F-P腔长的变化。采用高分辨率光谱解调技术,实现了基于光纤F-P传感器的超高灵敏度光声信号检测。系统对乙炔和甲烷的检测极限分别达到2×10-9和3×10-9,归一化噪声等效吸收系数为8×10-10cm-1W Hz-1/2。  相似文献   

4.
基于红外热辐射光源的光声气体分析仪   总被引:1,自引:0,他引:1  
研制了一种基于红外热辐射光源的光声气体分析仪,给出了该光声气体分析仪的设计理论、硬件结构、软件系统和实验测试结果。根据红外热辐射光源的光谱特性,通过比较吸收气体在不同吸收带中多线的综合吸收系数,确定了光声池的最优设计参数、滤光片的中心波长和带宽。实验结果表明,该光声气体分析仪对CO,NO和H2S的极限检测灵敏度分别达到1.6×10-6,4.5×10-6和4.0×10-4(被测气体与背景气体的分压比),并且对0~987×10-6 的CO测量显示了其良好的测量重复精度和线性度。此外,通过增加特定中心波长的滤光片还能够对其他多种小分子气体实现高灵敏度、实时、连续、自动地测量。  相似文献   

5.
CO和CH_4气体作为判断变压器运行状态的故障气体,对其浓度的探测在变压器维护中具有重要意义.为了准确探测变压器运行过程中产生的CH_4和CO气体浓度,本文利用光声光谱技术,设计了一套基于宽带光源的多组分气体探测系统,和共振型光声系统相比,该系统中所用的非共振型光声池体积小,易加工,池内各处信号强度相同,降低了对声学信号探测器的安装要求.系统的性能通过对CO和CH_4气体的探测进行评估.首先,从理论上分析了信号强度与调制频率呈反比,然后根据宽带光声系统在不同调制频率下的响应,确定系统的最佳调制频率为22 Hz.在最佳调制频率下,根据温度与待测气体光声信号的关系,对光声信号进行温度补偿,消除温度变化对光声信号的影响,进一步提高了系统的稳定性.最后,通过不同浓度的CH_4和CO气体对系统进行标定.实验表明,温度补偿前后,光声信号随温度的漂移分别为0.023 23V/℃和8.383 48×10~(-5) V/℃,通过对不同浓度CH_4和CO气体的探测,系统的线性度分别达到0.995和0.998 4.在一个大气压下,积分时间为1s时,宽带光声探测系统对CO和CH_4气体的探测极限浓度能够达到1μL/L.该系统成本低,线性度好,探测灵敏度符合国标对变压器维护过程中CO和CH_4气体的探测要求.  相似文献   

6.
使用中心波长为450 nm的高功率多模蓝光激光管(LD)作为激励光源, 结合电学调制相消法和离轴石英增强光声光谱(QEPAS)配置, 设计了一款高灵敏二氧化氮传感器. 电学调制相消法使离轴QEPAS传感器的背景噪声降低至1/269, 在标准大气压和1 s积分时间下, 获得的探测灵敏度为4.5 ppb, 对应的归一化噪声等效吸收系数(1σ )为2.2×10-8 cm-1·W/Hz1/2. 延长积分时间到46 s, 灵敏度能够进一步下降到0.34 ppb. 气体流速对该传感器的影响也被研究.  相似文献   

7.
周彧  曹渊  朱公栋  刘锟  谈图  王利军  高晓明 《物理学报》2018,67(8):84201-084201
近年来,气候变化对地球的生态环境产生严重影响,而大气温室气体在气候变化中具有重要的作用.一氧化二氮(N_2O)作为一种重要的温室气体,其浓度变化对大气环境产生重要影响,因此对其浓度的探测在大气环境研究中具有重要意义.本文开展了基于中国自主研发的7.6μm中红外量子级联激光的共振型光声光谱探测N_2O的研究,建立了N_2O光声光谱传感实验系统.此系统在传统的光声光谱探测的基础上优化改进,采用双光束增强的方式,增加了有效光功率,进一步提高了系统的探测灵敏度.探测系统以1307.66 cm~(-1)处的N_2O吸收谱线作为探测对象,结合波长调制技术对N_2O气体进行探测研究.通过对一定浓度的N_2O气体在不同调制频率和调制振幅的光声信号的探测,确定了系统的最佳调制频率和调制振幅分别为800 Hz和90 mV.在最优实验条件下对不同浓度的N_2O气体进行了测量,获得了系统的信号浓度定标曲线.实验表明,在锁相积分时间为30 ms时,系统的浓度探测极限为150×10~(-9).通过100次平均后,系统噪声进一步降低,实现了大气N_2O的探测,浓度探测极限达到了37×10~(-9).  相似文献   

8.
二氧化碳(CO2)是环境大气以及燃烧废气的主要成分,同时也是重要的化工原料,对其浓度进行高灵敏度检测在物理、生物、化学等众多学科中均有重要的应用。传统检测方法已经无法满足国防科研、能源化工、医疗诊断等科技前沿领域中对CO2浓度检测的需求。石英增强光声光谱(QEPAS)技术是近年来发展迅速的一种激光检测技术,具有高分辨率、小体积、对环境噪声免疫等优点。基于QEPAS技术探测灵敏度与激励光功率成正比的特性,以中心波长为1 572 nm的窄线宽分布反馈式半导体激光器为激励光源,将掺饵光纤放大器(EDFA)与QEPAS技术联用,提出了功率增强型QEPAS技术,实现了光声信号的大幅度提高。此外,通过波长调制技术、谐波解调技术以及电调制相消技术的使用,成功将装置的整体噪声压制在音叉式石英晶振的理论热噪声水平。激光波长调制深度对装置信号幅度的影响也通过实验在一个标准大气压下进行了研究。结果显示,对6 361.25 cm-1处CO2气体吸收线,当激光功率为1 495 mW,调制深度为0.33 cm-1,系统探测带宽为0.833 Hz时,功率增强型QEPAS装置对CO2的探测灵敏度为3.5 ppm,归一化等效吸收系数为1.01×10-8 W·cm-1·Hz-1/2。  相似文献   

9.
许雪梅  李奔荣  杨兵初  蒋礼  尹林子  丁一鹏  曹粲 《物理学报》2013,62(20):200704-200704
NO, NO2是大气污染源中的常见气体, 对环境具有严重的危害性. 为检测污染源中这两种气体的浓度, 构建了成本较低的基于红外热辐射光源的光声光谱气体检测系统. 分析计算得到了NO, NO2 在2500–6667 nm波段吸收谱线. 通过建立光声传输线RLC振荡电路模型和仿真得到品质因数、声压大小与谐振腔长、内腔半径以及调制频率的关系, 据此设计了光声池几何结构. 实验表明该系统所测得的光声信号与气体浓度有很好的线性关系, 并且对NO, NO2气体极限检测灵敏度分别达到4.01 和1.07 μL. 通过调节激光发射波长和选取滤波片, 该系统还可用于其他微量气体的浓度检测. 关键词: 大气污染 光声光谱 气体检测  相似文献   

10.
基于石英增强光声光谱技术,以中心波长为2.0μm的窄线宽分布反馈式半导体激光器(DFB)为激励光源,采用波长调制及二次谐波解调技术通过改变激光器工作电流实现波长扫描完成了痕量CO2气体检测系统,并通过优化实验参数确定了常压下激光最佳调制深度,实现了高灵敏CO2浓度的检测。通过改变待测气体中的水汽浓度,研究了水汽对CO2气体探测结果的影响,结果显示在水汽浓度低于0.2%范围内,CO2气体光声信号随H2O浓度的上升而明显增强,当浓度高于此值后,H2O浓度的增加对CO2光声信号的增强作用几乎维持不变。数据显示,常温常压下H2O分子通过提高分子弛豫率最多可将二氧化碳R16吸收线的光声信号幅值提高约2.1倍。优化后的装置可以很好的实现大气中CO2浓度的检测。该装置获得的最小探测灵敏度为19ppm(1σ,300ms积分时间),相应的归一化噪声等效吸收系数为4.71×10-9 cm-1·W·Hz-1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号