共查询到18条相似文献,搜索用时 61 毫秒
1.
高光谱影像是典型的高维数据,在光谱维和空间维都包含了大量信息。针对高光谱影像分类时光谱维数据量巨大的特点,提出一种基于三维空洞卷积残差神经网络的高光谱影像分类方法。该方法以高光谱像元立方体作为数据输入,使用三维卷积核同时提取高光谱数据的空间维和光谱维特征,并通过在卷积核中引入空洞结构,在不增加网络参数量和不消减数据特征的情况下提高卷积核的感受野,从而提高神经网络的分类的精度。该方法利用残差结构避免了由网络层数加深导致的梯度消失问题,最终使用Softmax分类器完成高光谱像元的分类工作。实验结果表明:所提方法在Indian Pines和Salinas数据集上分别取得了97.303%和97.236%的总体分类精度,与各对照组相比具有更好的分类效果,由此证明所提方法可以提升高光谱影像的分类性能。 相似文献
2.
3.
鱼类产品新鲜度鉴别一直是重要的研究课题,相较于目前常规鱼类品质检测方法存在的成本高、检测时间长等问题,高光谱成像技术(HSI)因其无损、快速等优势得到了学者的广泛研究。卷积神经网络是深度学习中应用较为广泛的模型,表达能力强,模型效率高。因此,使用卷积神经网络(CNN)结合高光谱成像技术建立多宝鱼新鲜度鉴别模型。采集160个多宝鱼样本感兴趣区域(ROI)光谱,并根据样本不同冻融次数和冷冻时间分为5类新鲜度。以VGG11网络为基础,针对光谱数据特点对网络结构进行调整,减少全连接层数量,降低模型的复杂度,分别对比不同卷积核个数、激活函数对分类性能造成的影响,确定最佳CNN网络结构。由于高光谱数据量大同时存在的冗余信息较多,分别采用无信息变量消除算法(UVE)和随机青蛙算法(RF)对高光谱数据进行波长筛选,将波长筛选后的高光谱数据分别输入卷积神经网络(CNN)、最小二乘支持向量机(LS-SVM)、 K最近邻算法(KNN)建立模型。采用无信息变量消除(UVE)提取的165个特征波长建立的UVE-CNN模型鉴别效果最佳,分类模型在测试集上的精度达到了100%。结果表明,利用卷积神经网络与高光谱成像... 相似文献
4.
拉曼光谱物质定性识别已被广泛的应用于化工、安防、缉毒等行业和研究领域,但是传统的拉曼光谱分析技术依赖于光谱数据库,通过光谱特征提取进行识别。特征提取是拉曼识别的关键处理步骤,通常利用主成分分析,因子分析等方法进行特征提取,而后通过KNN,SVM和随机森林等方法进行光谱特征定性识别,当拉曼数据库不存在待定性物质时,易造成待检测物质的错误分类。针对此问题,提出一种基于卷积神经网络的对数据库缺少物质光谱识别方法。在实验过程中,采用九类,200余种精神类药品拉曼光谱作为测试对象,通过搭建卷积神经网络自动特征提取并利用Softmax分类器将200余种物质,按照Amphetamine, cathinone, cannabinoids等九种类别进行定性分析。通过与传统机器学习方法如K近邻,支持向量机等方法进行比较,基于卷积神经网络的模型识别准确性有显著提高,该方法可为拉曼光谱数据库的光谱识别检索提供一种新的识别方法。 相似文献
5.
三维脑胶质瘤磁共振成像肿瘤形状各异、边缘模糊,目前大多数基于2D卷积神经网络的分割方法不能很好的分割三维图像。为了能够准确分割出三维图像中的肿瘤部分,提出一种融合多尺度特征信息的3D卷积神经网络脑肿瘤图像分割方法。利用并行的3D空洞卷积提取特征信息,将不同感受野的信息融合。将Dice损失和BCE损失结合,形成一种新的损失函数并配合恒等映射,进一步提高分割精度。在BraTs2020数据集上对模型进行验证,结果表明,该模型分割的全肿瘤区、核心区和增强区的Dice系数分别为89.1%、83.9%和82.6%。在LGG脑部肿瘤图像数据集上对模型进行验证,结果表明,Dice系数达到了93.3%。所提出的分割方法不仅能够精确的分割三维脑胶质瘤图像,而且同样适用于分割二维脑胶质瘤图像。 相似文献
6.
恒星光谱自动分类是研究恒星光谱的基础内容,快速、准确自动识别、分类恒星光谱可提高搜寻特殊天体速度,对天文学研究有重大意义。目前我国大型巡天项目LAMOST每年发布数百万条光谱数据,对海量恒星光谱进行快速、准确自动识别与分类研究已成为天文学大数据分析与处理领域的研究热点之一。针对恒星光谱自动分类问题,提出一种基于卷积神经网络(CNN)的K和F型恒星光谱分类方法,并与支持向量机(SVM)、误差反向传播算法(BP)对比,采用交叉验证方法验证分类器性能。与传统方法相比CNN具有权值共享,减少模型学习参数;可直接对训练数据自动进行特征提取等优点。实验采用Tensorflow深度学习框架,Python3.5编程环境。K和F恒星光谱数据集采用国家天文台提供的LAMOST DR3数据。截取每条光谱波长范围为3 500~7 500 部分,对光谱均匀采样生成数据集样本,采用min-max归一化方法对数据集样本进行归一化处理。CNN结构包括:输入层,卷积层C1,池化层S1,卷积层C2,池化层S2,卷积层C3,池化层S3,全连接层,输出层。输入层为一批K和F型恒星光谱相同的3 700个波长点处流量值。C1层设有10个大小为1×3步长为1的卷积核。S1层采用最大池化方法,采样窗口大小为1×2,无重叠采样,生成10张特征图,与C1层特征图数量相同,大小为C1层特征图的二分之一。C2层设有20个大小为1×2步长为1的卷积核,输出20张特征图。S2层对C2层20张特征图下采样输出20张特征图。C3层设有30个大小为1×3步长为1的卷积核,输出30张特征图。S3层对C3层30张特征图下采样输出30张特征图。全连接层神经元个数设置为50,每个神经元都与S3层的所有神经元连接。输出层神经元个数设置为2,输出分类结果。卷积层激活函数采用ReLU函数,输出层激活函数采用softmax函数。对比算法SVM类型为C-SVC,核函数采用径向基函数,BP算法设有3个隐藏层,每个隐藏层设有20,40和20个神经元。数据集分为训练数据和测试数据,将训练数据的40%,60%,80%和100%作为5个训练集,测试数据作为测试集。分别将5个训练集放入模型中训练,共迭代8 000次,每次训练好的模型用测试集进行验证。对比实验采用100%的训练数据作为训练集,测试数据作为测试集。采用精确率、召回率、F-score、准确率四个评价指标评价模型性能,对实验结果进行详细分析。分析结果表明CNN算法可对K和F型恒星光谱快速自动分类和筛选,训练集数据量越大,模型泛化能力越强,分类准确率越高。对比实验结果表明采用CNN算法对K和F型恒星光谱自动分类较传统机器学习SVM和BP算法自动分类准确率更高。 相似文献
7.
8.
马铃薯是世界第四大粮食作物,具有丰富的营养价值。但其在贮藏和运输过程中易被镰刀真菌侵染而产生干腐病,最终造成巨大资源浪费和经济损失,因此实现马铃薯干腐病的早期快速无损检测是必要的。在样品被病原菌侵染时,经历了健康—潜育期—轻度病害—重度病害的阶段,其中潜育期的样品难以识别,主要源于病害发生时间较短,表面未形成肉眼可见的病斑,与健康样品相似。为了实现马铃薯干腐病潜育期的识别,结合高光谱成像和深度学习展开马铃薯干腐病早期诊断研究。以健康和不同腐败程度马铃薯为实验对象,获取健康和不同病害等级的马铃薯高光谱图像。然后基于ENVI人工选取健康部位和不同腐败程度样品的病斑部位为感兴趣区域(ROI),并计算ROI的平均光谱值作为该样品的最终光谱信息。以光谱数据作为输入变量,病害等级作为输出变量,建立卷积神经网络(CNN)模型,并对其网络结构进行优化,对比分析不同模型的预测结果,筛选出最优网络层模型为Model_3_3。并基于此结构进行学习率的优化,得到Model_0.0001识别效果最好,其总体准确率、精度、灵敏度和特异性分别为99.68%、 99.76%、 98.82%、 99.54%。为了进一步... 相似文献
9.
针对大白菜农药残留传统化学检测手段存在前期处理过程繁琐、检测周期长等不足,提出了一种快速无损识别大白菜农药残留种类的方法.以1组无农药残留和4组含有均匀喷洒农药(毒死蜱、乐果、灭多威和氯氰菊酯)的大白菜样本为研究对象(药液浓度配比分别为0.10,1.00,0.20和2.00 mg·kg-1),经12小时自然吸收后,利用... 相似文献
10.
11.
3D卷积自动编码网络的高光谱异常检测 总被引:1,自引:0,他引:1
高光谱图像包含丰富的地物光谱信息,在遥感图像领域有着巨大的发展前景.高光谱图像异常检测无需任何先验光谱信息,便可检测出图像中的异常目标.因此,在国防军事和民用领域都有广泛的应用,是现阶段高光谱图像处理领域的研究热点.然而,高光谱图像存在数据复杂、冗余性强、未标记以及样本数量少等特点,这给高光谱图像异常检测带来了很大的挑... 相似文献
12.
矿物光谱综合反映了岩矿的物理化学特性、组分和内部结构特征,已被应用于岩矿识别研究.传统的矿物光谱分类方法需要先对矿物光谱进行预处理,再采用不同方法分析光谱特征,从而实现分类目的.但同时也会造成部分光谱信息丢失,导致最终分类精度不高且操作过程繁琐、效率低下,难以应对日益增长的大数据处理需求.因此,建立一个准确、高效的矿物... 相似文献
13.
恒星光谱数据的分类是天体光谱自动识别的最基本任务之一,光谱分类的研究能够为恒星的演化提供线索。随着科技的发展,天文数据也向大数据时代迈进,需要处理的恒星光谱数量越来越多,如何对其进行自动而精准地分类成为了天文学家要解决的难题之一。当前恒星光谱自动分类问题的解决方法相对较少,为此本文使用了一种基于卷积神经网络的方法对恒星光谱MK系统进行分类。该网络由数据输入层、四个卷积层、四个池化层、全连接层、输出层构成,与传统网络相比具有局部感知、参数共享等优点实验。在Python3.5的环境下编程,利用Tensorflow构建了一个简单高效的具有四个卷积层的卷积神经网络,并将Dropout作用于全连接层之后以防止过度拟合。Dropout的基本思想:当网络模型进行训练时,把一些神经网络节点按一定的比例丢弃,使其暂时不发挥作用。Dropout可以理解成是一种十分高效的神经网络模型平均方法,由于它不依赖于某些局部特征所以能够让网络模型更加鲁棒。实验中使用的一维恒星光谱图是取自LAMOST DR3数据库,首先进行预处理截取光谱3 600~7 300 Å的部分,均匀采样后使用min-max标准化法对其进行初始化。实验包括两部分:第一部分为依据恒星光谱MK系统对光谱进行分类,每一类的训练样本包含1 000条光谱数据,测试样本为400条光谱数据,首先通过训练样本对CNN网络进行训练,进行3 000次的迭代,用训练后的网络将测试样本进行分类以验证网络的准确性;第二部分为相邻两类的恒星光谱的分类,其中O型星数据集样本为250条光谱,其余类别恒星样本数据集均为4 000条光谱,将数据5等分,每次选取当中的一份当作测试集,其余部分当作训练集,采用5折交叉验证法求得模型准确率,用BP神经网络进行对比实验。选择对网络模型进行评估的指标包括精确率P、召回率R、F-score、准确率A。实验结果显示CNN在对六类恒星光谱进行分类时其准确率都在95%以上,在对相邻类别的恒星进行分类时,由于O型星样本量较少,所以得到的分类结果不太理想,对其余类别的恒星分类准确率都高于98%,以上结果都证明了CNN算法能够很好地解决恒星光谱的分类问题。 相似文献
14.
15.
基于径向基函数神经网络的高光谱遥感图像分类 总被引:4,自引:1,他引:4
从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。首先进行了最小噪声分离变换,提取了1~20个分量的数据,使用提取后的数据(20维)、提取后数据的纹理变换(20维)和主成分分析的前(20维),组成了60维向量数据进行分类处理,这种分类器结构简单、容易训练、收敛速度快,其分类精度达到69.27%,高于BP神经网络分类算法(51.20%)以及常用的最小距离分类(MDC)算法(40.88%)。通过对结果和过程进行分析,实验证明径向基函数神经网络在高光谱遥感分类中具有较好的适用性。 相似文献
16.
肺炎支原体是造成人类呼吸系统疾病的主要原因.临床中,患者感染不同肺炎支原体症状极为相似,很难根据症状判别肺炎支原体类型并对症给药.因此,准确判别肺炎支原体菌株类型对于发病机理和疾病流行病学研究以及临床精准治疗具有重要意义.拉曼光谱具有快速、高效、无污染等优点,在生物医学领域逐渐得到越来越多研究者们的关注.一维卷积神经网... 相似文献
17.
基于卷积神经网络的光谱预处理方法 总被引:1,自引:0,他引:1
光谱的预处理在光谱分析中占有非常重要的地位。针对现有光谱去噪算法对弱峰保存能力差、基线校正算法对光谱能量过扣除、光谱特征峰定位不准确以及各种预处理算法串行处理造成的误差累计等问题,设计了一个端到端的卷积神经网络。该网络由两个模块组成:基线校正和去噪模块和特征峰定位模块。这两个模块相互连接又独立输出。理想条件下,可以依据光谱的线型函数和特征峰的位置拟合出无噪声无基线的光谱,所以在基线校正和光谱去噪模块中连接特征峰定位模块的输出可以有效的提高去噪和基线校正的精度;而高质量的光谱有助于更加精确的估计光谱峰的位置,因此这两个模块相互连接可以有效提高重建光谱的质量。光谱基线校正和去噪模块是一个前馈网络,该模块由多个卷积层、激活函数和批归一化层构成,每一层均连接了特征峰定位模块的输出。特征峰定位模块是一个多尺度特征融合网络,该模块使用不同尺寸的卷积核将光谱分为不同的尺度,融合大小不同尺度的特征估计光谱特征峰的具体位置。在网络训练时,使用不同温度、湿度和不同预热时间的光谱仪获得光谱作为输入样本,使用中国计量院的标准仪器获得光谱数据作为输出样本。在实验中,首先对合成的光谱分别添加不同信噪比的噪声和不同峰值的高斯基线,分别评价该网络在噪声抑制、基线校正、光谱特征峰校正的能力;然后将添加噪声和基线后的玉米的近红外光谱作为样本,用最先进的算法对它们进行预处理,然后用偏最小二乘法估计玉米中的水和油的浓度。估计的浓度与用标准仪器测量的真实浓度进行比较,以证明所提出的CNN的优势。实验证明,所设计的网络在单任务和多任务处理中均能取得良好的结果。而且经过该网络处理的光谱在定量分析中可以得到更准确的结果,具有较强的实用价值。 相似文献
18.
Tao Wang Changhua Lu Yining Sun Mei Yang Chun Liu Chunsheng Ou 《Entropy (Basel, Switzerland)》2021,23(1)
Early detection of arrhythmia and effective treatment can prevent deaths caused by cardiovascular disease (CVD). In clinical practice, the diagnosis is made by checking the electrocardiogram (ECG) beat-by-beat, but this is usually time-consuming and laborious. In the paper, we propose an automatic ECG classification method based on Continuous Wavelet Transform (CWT) and Convolutional Neural Network (CNN). CWT is used to decompose ECG signals to obtain different time-frequency components, and CNN is used to extract features from the 2D-scalogram composed of the above time-frequency components. Considering the surrounding R peak interval (also called RR interval) is also useful for the diagnosis of arrhythmia, four RR interval features are extracted and combined with the CNN features to input into a fully connected layer for ECG classification. By testing in the MIT-BIH arrhythmia database, our method achieves an overall performance of 70.75%, 67.47%, 68.76%, and 98.74% for positive predictive value, sensitivity, F1-score, and accuracy, respectively. Compared with existing methods, the overall F1-score of our method is increased by 4.75~16.85%. Because our method is simple and highly accurate, it can potentially be used as a clinical auxiliary diagnostic tool. 相似文献