首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SARS-CoV-2 variant Omicron is characterized, among others, by more than 30 amino acid changes occurring on the spike glycoprotein with respect to the original SARS-CoV-2 spike protein. We report a comprehensive analysis of the effects of the Omicron spike amino acid changes in the interaction with human antibodies, obtained by modeling them into selected publicly available resolved 3D structures of spike–antibody complexes and investigating the effects of these mutations at structural level. We predict that the interactions of Omicron spike with human antibodies can be either negatively or positively affected by amino acid changes, with a predicted total loss of interactions only in a few complexes. Moreover, our analysis applied also to the spike-ACE2 interaction predicts that these amino acid changes may increase Omicron transmissibility. Our approach can be used to better understand SARS-CoV-2 transmissibility, detectability, and epidemiology and represents a model to be adopted also in the case of other variants.  相似文献   

2.
Protein–protein interactions (PPIs) perform various functions and regulate processes throughout cells. Knowledge of the full network of PPIs is vital to biomedical research, but most of the PPIs are still unknown. As it is infeasible to discover all of them experimentally due to technical and resource limitations, computational prediction of PPIs is essential and accurately assessing the performance of algorithms is required before further application or translation. However, many published methods compose their evaluation datasets incorrectly, using a higher proportion of positive class data than occuring naturally, leading to exaggerated performance. We re-implemented various published algorithms and evaluated them on datasets with realistic data compositions and found that their performance is overstated in original publications; with several methods outperformed by our control models built on ‘illogical’ and random number features. We conclude that these methods are influenced by an over-characterization of some proteins in the literature and due to scale-free nature of PPI network and that they fail when tested on all possible protein pairs. Additionally, we found that sequence-only-based algorithms performed worse than those that employ functional and expression features. We present a benchmark evaluation of many published algorithms for PPI prediction. The source code of our implementations and the benchmark datasets created here are made available in open source.  相似文献   

3.
Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ–peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.  相似文献   

4.
This review provides an overview of the properties of cyclotides and their potential for developing novel peptide-based therapeutics. The selective disruption of protein–protein interactions remains challenging, as the interacting surfaces are relatively large and flat. However, highly constrained polypeptide-based molecular frameworks with cell-permeability properties, such as the cyclotide scaffold, have shown great promise for targeting those biomolecular interactions. The use of molecular techniques, such as epitope grafting and molecular evolution employing the cyclotide scaffold, has shown to be highly effective for selecting bioactive cyclotides.  相似文献   

5.
A protein can exist in multiple states under native conditions and those states with low populations are often critical to biological function and self‐assembly. To investigate the role of the minor states of an acyl carrier protein, NMR techniques were applied to determine the number of minor states and characterize their structures and kinetics. The acyl carrier protein from Micromonospora echinospora was found to exist in one major folded state (95.2 %), one unfolded state (4.1 %), and one intermediate state (0.7 %) under native conditions. The three states are in dynamic equilibrium and the intermediate state very likely adopts a native‐like structure and is an off‐pathway folding product. The intermediate state may mediate the formation of oligomers in vitro and play an important role in the recognition of partner enzymes in vivo.  相似文献   

6.
7.
Cyclic and macrocyclic peptides constitute advanced molecules for modulating protein–protein interactions (PPIs). Although still peptide derivatives, they are metabolically more stable than linear counterparts, and should have a lower degree of flexibility, with more defined secondary structure conformations that can be adapted to imitate protein interfaces. In this review, we analyze recent progress on the main methods to access cyclic/macrocyclic peptide derivatives, with emphasis in a few selected examples designed to interfere within PPIs. These types of peptides can be from natural origin, or prepared by biochemical or synthetic methodologies, and their design could be aided by computational approaches. Some advances to facilitate the permeability of these quite big molecules by conjugation with cell penetrating peptides, and the incorporation of β-amino acid and peptoid structures to improve metabolic stability, are also commented. It is predicted that this field of research could have an important future mission, running in parallel to the discovery of new, relevant PPIs involved in pathological processes.  相似文献   

8.
Many molecular chaperones are promiscuous and interact with a wide range of unfolded, quasi‐native, and native client proteins. The mechanisms by which chaperones interact with the highly diverse structures of native clients thus remain puzzling. In this work, we investigate at the atomic level how three ATP‐independent chaperones interact with a β‐sheet‐rich protein, the Fyn SH3 domain. The results reveal that the chaperone Spy recognizes the locally frustrated surface of the client Fyn SH3 and that the interaction is transient and highly dynamic, leaving the chaperone‐interacting surface on Fyn SH3 solvent accessible. The two alternative molecular chaperones SurA and Skp recognize the same locally frustrated surface of the Fyn SH3 domain. These results indicate dynamic recognition of frustrated segments as a common mechanism underlying the chaperone–native client interaction, which also provides a basis for chaperone promiscuousness.  相似文献   

9.
Computational analysis of protein–ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein–ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.  相似文献   

10.
11.
Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure‐based design of PPI inhibitors through stabilizing or mimicking turns, β‐sheets, and helices.  相似文献   

12.
13.
The majority of snacks expanded by extrusion (SEE) are made with vegetable sources, to improve their nutritional content; it has been proposed to incorporate squid (Dosidicus gigas), due to its high protein content, low price and high availability. However, the interaction of proteins of animal origin with starch during extrusion causes negative effects on the sensory properties of SEE, so it is necessary to know the type of protein–carbohydrate interactions and their effect on these properties. The objective of this research was to study the interaction of proteins and carbohydrates of SEE elaborated with squid mantle, potato and corn. The nutritional composition and protein digestibility were evaluated, Fourier transform infrared (FTIR) and Differential Scanning Calorimetry (DSC) were used to study the formation of protein–starch complexes and the possible regions responsible for their interactions. The SEE had a high protein content (40–85%) and biological value (>93%). The melting temperature (Tm) was found between 145 and 225 °C; the Tm values in extruded samples are directly proportional to the squid content. The extrusion process reduced the amine groups I and II responsible for the protein–protein interaction and increased the O-glucosidic bonds, so these bonds could be responsible for the protein–carbohydrate interactions.  相似文献   

14.
The discovery of novel protein–protein interaction (PPI) modulators represents one of the great molecular challenges of the modern era. PPIs can be modulated by either inhibitor or stabilizer compounds, which target different though proximal regions of the protein interface. In principle, protein–stabilizer complexes can guide the design of PPI inhibitors (and vice versa). In the present work, we combine X‐ray crystallographic data from both stabilizer and inhibitor co‐crystal complexes of the adapter protein 14‐3‐3 to characterize, down to the atomic scale, inhibitors of the 14‐3‐3/Tau PPI, a potential drug target to treat Alzheimer’s disease. The most potent compound notably inhibited the binding of phosphorylated full‐length Tau to 14‐3‐3 according to NMR spectroscopy studies. Our work sets a precedent for the rational design of PPI inhibitors guided by PPI stabilizer–protein complexes while potentially enabling access to new synthetically tractable stabilizers of 14‐3‐3 and other PPIs.  相似文献   

15.
Protein misfolding and aggregation play a significant role in several neurodegenerative diseases. In the present work, the spontaneous aggregation of hen egg-white lysozyme (HEWL) in an alkaline pH 12.2 at an ambient temperature was studied to obtain molecular insights. The time-dependent changes in spectral peaks indicated the formation of β sheets and their effects on the backbone and amino acids during the aggregation process. Introducing iodoacetamide revealed the crucial role of intermolecular disulphide bonds amidst monomers in the aggregation process. These findings were corroborated by Molecular Dynamics (MD) simulations and protein-docking studies. MD simulations helped establish and visualize the unfolding of the proteins when exposed to an alkaline pH. Protein docking revealed a preferential dimer formation between the HEWL monomers at pH 12.2 compared with the neutral pH. The combination of Raman spectroscopy and MD simulations is a powerful tool to study protein aggregation mechanisms.  相似文献   

16.
Protein–protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein–protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.  相似文献   

17.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.  相似文献   

18.
Genomic DNA in bacteria exists in a condensed state, which exhibits different biochemical and biophysical properties from a dilute solution. DNA was concentrated on streptavidin‐covered single‐walled carbon nanotubes (Strep ? SWNTs) through biotin–streptavidin interactions. We reasoned that confining DNA within a defined space through mechanical constraints, rather than by manipulating buffer conditions, would more closely resemble physiological conditions. By ensuring a high streptavidin loading on SWNTs of about 1 streptavidin tetramer per 4 nm of SWNT, we were able to achieve dense DNA binding. DNA is bound to Strep ? SWNTs at a tunable density and up to as high as 0.5 mg mL?1 in solution and 29 mg mL?1 on a 2D surface. This platform allows us to observe the aggregation behavior of DNA at high concentrations and the counteracting effects of HU protein (a histone‐like protein from Escherichia coli strain U93) on the DNA aggregates. This provides an in vitro model for studying DNA–DNA and DNA–protein interactions at a high DNA concentration.  相似文献   

19.
Heme proteins are known to perform a plethora of biologically important functions. This article reviews work that has been conducted on various class I cytochrome c proteins over a period of nearly 50 years. The article focuses on the relevance of symmetry-lowering heme–protein interactions that affect the function of the electron transfer protein cytochrome c. The article provides an overview of various, mostly spectroscopic studies that explored the electronic structure of the heme group in these proteins and how it is affected by symmetry-lowering deformations. In addition to discussing a large variety of spectroscopic studies, the article provides a theoretical framework that should enable a comprehensive understanding of the physical chemistry that underlies the function not only of cytochrome c but of all heme proteins.  相似文献   

20.
Many important biological processes such as protein folding and ligand binding are too fast to be fully resolved using conventional stopped-flow techniques. Although advances in mixer design and detection methods have provided access to the microsecond time regime, there is room for improvement in terms of temporal resolution and sensitivity. To address this need, we developed a continuous-flow mixing instrument with a dead time of 12 to 27 µs (depending on solution viscosity) and enhanced sensitivity, sufficient for monitoring tryptophan or tyrosine fluorescence changes at fluorophore concentrations as low as 1 µM. Relying on commercially available laser microfabrication services, we obtained an integrated mixer/flow-cell assembly on a quartz chip, based on a cross-channel configuration with channel dimensions and geometry designed to minimize backpressure. By gradually increasing the width of the observation channel downstream from the mixing region, we are able to monitor a reaction progress time window ranging from ~10 µs out to ~3 ms. By combining a solid-state UV laser with a Galvano-mirror scanning strategy, we achieved highly efficient and uniform fluorescence excitation along the flow channel. Examples of applications, including refolding of acid-denatured cytochrome c triggered by a pH jump and binding of a peptide ligand to a PDZ domain, demonstrate the capability of the technique to resolve fluorescence changes down to the 10 µs time regime on modest amounts of reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号