首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Osteoblasts and osteoclasts play a pivotal role in maintaining bone homeostasis, of which excessive bone resorption by osteoclasts can cause osteoporosis and various bone diseases. However, current osteoporosis treatments have many side effects, and research on new treatments that can replace these treatments is ongoing. Therefore, in this study, the roles of ligustroside (LGS) and oleoside dimethylester (ODE), a natural product-derived compound isolated from Syringa oblata subsp. dilatata as a novel, natural product-derived osteoporosis treatments were investigated. In the results of this study, LGS and ODE inhibited the differentiation of receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced RAW264.7 cells into osteoclasts without cytotoxicity, and down-regulated the activity of TRAP, a specific biomarker of osteoclasts. In addition, it inhibited bone resorption and actin ring formation, which are important functions and features of osteoclasts. Also, the effects of LGS and ODE on the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) and phosphoinositide 3-kinases (PI3K)/ protein kinase B (Akt)/mechanistic target of rapamycin (mTOR) signaling pathways that play important roles in osteoclast differentiation were evaluated. In the results, LGS and ODE downregulated the phosphorylation of RANKL-induced MAPK and PI3K/Akt/mTOR proteins in a concentration-dependent manner, translocation of NF-κB into the nucleus was inhibited. As a result, the compounds LGS and ODE isolated from S. oblate subsp. dilatata effectively regulated the differentiation of RANKL-induced osteoclasts and inhibited the phosphorylation of signaling pathways that play a pivotal role in osteoclast differentiation. Therefore, these results suggest the possibility of LGS and ODE as new natural product treatments for bone diseases caused by excessive osteoclasts.  相似文献   

2.
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis.  相似文献   

3.
Fritillariae thunbergii bulbus has been widely used to treat symptoms of coughs and airway congestion in the chest due to pathological colds and damp phlegm in traditional Chinese medicine. Despite its long history of traditional use, its pharmacological activities on osteoclastogenesis and osteoporosis have not been evaluated. This study investigated the effects of the water extract of Fritillariae thunbergii bulbus (WEFT) on osteoclast differentiation in bone marrow-derived macrophage cells and on ovariectomy (OVX)-induced osteoporosis in mice. We found that WEFT significantly inhibited osteoclastogenesis by downregulating the receptor activator of the NF-κB ligand (RANKL) signaling-induced nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) expression. In an OVX-induced osteoporosis model, WEFT significantly prevented the OVX-induced trabecular loss of femurs, accompanied by a reduction in fat accumulation in the bone marrow and liver. In addition, WEFT significantly prevented weight gain and gonadal fat gain without recovering uterine atrophy. Using ultrahigh-performance liquid chromatography-tandem mass spectrometry, seven alkaloids (peimisine glucoside, yibeissine, peiminoside, sipeimine-glucoside, peimisine, peimine, and peiminine) were identified in WEFT. The results of this study suggest that WEFT can be a potential pharmacological candidate to reduce menopausal osteoporosis and menopause-related symptoms, such as fat accumulation.  相似文献   

4.
Yukmijihwang-tang (YJ) has been used to treat diabetes mellitus, renal disorders, and cognitive impairment in traditional medicine. This study aimed to evaluate the anti-osteoporotic effect of YJ on ovariectomy (OVX)-induced bone loss in a rat and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs). YJ reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) in an osteoclast/osteoblast co-culture system by regulating the ratio of RANKL/osteoprotegerin (OPG) by osteoblasts. Overall, YJ reduced TRAP-positive cell formation and TRAP activity and F-actin ring formation. Analysis of the underlying mechanisms indicated that YJ inhibited the activation of the nuclear factor of activated T cell cytoplasmic 1 (NFATc1) and c-Fos, resulting in the suppression of osteoclast differentiation-related genes such as TRAP, ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit d2, osteoclast-associated receptor, osteoclast-stimulatory transmembrane protein, dendritic cell-specific transmembrane protein, matrix metalloproteinase-9, cathepsin K, and calcitonin receptor. YJ also inhibited the nuclear translocation of NFATc1. Additionally, YJ markedly inhibited RANKL-induced phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation including the p38, JNK, ERK, and NF-κB. Consistent with these in vitro results, the YJ-administered group showed considerably attenuated bone loss in the OVX-mediated rat model. These results provide promising evidence for the potential novel therapeutic application of YJ for bone diseases such as osteoporosis.  相似文献   

5.
In Asia, Amomum tsao-ko has long been used as a spice or seasoning in food to stimulate digestion. In the present study, we evaluated the effects of ethanol extract of Amomum tsao-ko (EEAT) on menopausal osteoporosis and obesity. After the administration of EEAT in ovariectomy (OVX) mice models for five weeks, microcomputed tomography and a histological analysis were performed to assess, respectively, the trabecular structure and the fat accumulation in adipose, liver, and bone tissues. We also examined the effects of EEAT on a bone marrow macrophage model of osteoclastogenesis by in vitro stimulation from the receptor activator of nuclear factor-kappa Β ligand (RANKL) through real-time PCR and Western blot analysis. In addition, ultrahigh performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) with authentic standards was applied to characterize the phytochemical profiling of EEAT. We found that EEAT significantly decreased OVX-induced body weight gain and fat accumulation, significantly prevented OVX-induced deterioration of bone mineral density and microstructure of trabecular tissues, and significantly inhibited osteoclast differentiation by downregulating NF-κB/Fos/NFATc1 signaling in osteoclasts. Furthermore, UHPLC–MS/MS identified eight beneficial phytochemicals in EEAT. Collectively, these results suggest that EEAT might be an effective nutraceutical candidate to attenuate menopausal osteoporosis by inhibiting osteoclastogenesis and to prevent obesity by suppressing fat accumulation.  相似文献   

6.
Ten polyketide derivatives (1–10), including a new natural product named (E)-2,4-dihydroxy-3-methyl-6-(2-oxopent-3-en-1-yl) benzaldehyde (1), and five known diketopiperazines (11–15), were isolated from the mangrove-sediment-derived fungus Aspergillus sp. SCSIO41407. The structures of 1–15 were determined via NMR and MS spectroscopic analysis. In a variety of bioactivity screening, 3 showed weak cytotoxicity against the A549 cell line, and 2 exhibited weak antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 3, 5, and 6 showed inhibition against acetylcholinesterase (AChE) with IC50 values of 23.9, 39.9, and 18.6 μM. Compounds 11, 12, and 14 exhibited obvious inhibitory activities of lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) with IC50 values of 19.2, 20.9, and 8.7 μM, and they also suppressed RANKL-induced osteoclast differentiation in bone marrow macrophages cells (BMMCs), with the concentration of 5 μM. In silico molecular docking with AChE and NF-κB p65 protein were also performed to understand the inhibitory activities, and 1, 11–14 showed obvious protein/ligand-binding effects to the NF-κB p65 protein.  相似文献   

7.
8.
Branched-chain aminotransferase 1 (BCAT1) transfers the amine group on branched-chain amino acids (BCAAs) to alpha-ketoglutarate. This generates glutamate along with alpha-keto acids that are eventually oxidized to provide the cell with energy. BCAT1 thus plays a critical role in sustaining BCAA concentrations and availability as an energy source. Osteoclasts have high metabolic needs during differentiation. When we assessed the levels of amino acids in bone marrow macrophages (BMMs) that were undergoing receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, we found that the BCAA levels steadily increase during this process. In vitro analyses then showed that all three BCAAs but especially valine were needed for osteoclast maturation. Moreover, selective inhibition of BCAT1 with gabapentin significantly reduced osteoclast maturation. Expression of enzymatically dead BCAT1 also abrogated osteoclast maturation. Importantly, gabapentin inhibited lipopolysaccharide (LPS)-induced bone loss of calvaria in mice. These findings suggest that BCAT1 could serve as a therapeutic target that dampens osteoclast formation.Subject terms: Differentiation, Targeted bone remodelling  相似文献   

9.
Receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) play key roles in bone metabolism and the immune system. The RANK/RANKL complex has also been shown to be critical in the formation of mammary epithelia cells. The female hormones estradiol and progesterone closely control the action of RANKL with RANK. Blood concentration of these sex hormones in the postmenopausal period leads to an increase in RANK/RANKL signaling and are a major cause of women’s osteoporosis, characterized by altered bone mineralization. Knowledge of the biochemical relationships between hormones and RANK/RANKL signaling provides the opportunity to design novel therapeutic agents to inhibit bone loss, based on the anti-RANKL treatment and inhibition of its interaction with the RANK receptor. The new generation of both anti- and mesoprogestins that inhibit the NF-κB-cyclin D1 axis and blocks the binding of RANKL to RANK can be considered as a potential source of new RANK receptor ligands with anti-RANKL function, which may provide a new perspective into osteoporosis treatment itself as well as limit the osteoporosis rise during breast cancer metastasis to the bone.  相似文献   

10.
Caragana rosea Turcz, which belongs to the Leguminosae family, is a small shrub found in Northern and Eastern China that is known to possess anti-inflammatory properties and is used to treat fever, asthma, and cough. However, the underlying molecular mechanisms of its anti-inflammatory effects are unknown. Therefore, we used lipopolysaccharide (LPS) in RAW264.7 macrophages to investigate the molecular mechanisms that underlie the anti-inflammatory activities of a methanol extract of Caragana rosea (Cr-ME). We showed that Cr-ME reduced the production of nitric oxide (NO) and mRNA levels of iNOS, TNF-α, and IL-6 in a concentration-dependent manner. We also found that Cr-ME blocked MyD88- and TBK1-induced NF-κB and IRF3 promoter activity, suggesting that it affects multiple targets. Moreover, Cr-ME reduced the phosphorylation levels of IκBα, IKKα/β and IRF3 in a time-dependent manner and regulated the upstream NF-κB proteins Syk and Src, and the IRF3 protein TBK1. Upon overexpression of Src and TBK1, Cr-ME stimulation attenuated the phosphorylation of the NF-κB subunits p50 and p65 and IRF3 signaling. Together, our results suggest that the anti-inflammatory activity of Cr-ME occurs by inhibiting the NF-κB and IRF3 signaling pathways.  相似文献   

11.
Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1–6 μM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.  相似文献   

12.
Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IκB kinase (IKK)/IκB/nuclear factor-κB (NF-κB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IκB phosphorylation and the expression of two NF-κB subunits (p50 and p65) in the IKK/IκB/NF-κB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis.  相似文献   

13.
Osteoporosis is the result of an imbalance in the bone-remodeling process via an increase in osteoclastic activity and a decrease in osteoblastic activity. Our previous studies have shown that Perilla frutescens seed meal has anti-osteoclastogenic activity. However, the role of perilla leaf hexane fraction (PLH) in osteoporosis has not yet been investigated and reported. In this study, we aimed to investigate the effects of PLH in osteoclast differentiation and osteogenic potential using cell-based experiments in vitro. From HPLC analysis, we found that PLH contained high luteolin and baicalein. PLH was shown to inhibit RANKL-induced ROS production and tartrate-resistant acid phosphatase (TRAP)-positive multi-nucleated osteoclasts. Moreover, PLH significantly downregulated the RANKL-induced MAPK and NF-κB signaling pathways, leading to the attenuation of NFATc1 and MMP-9 expression. In contrast, PLH enhanced osteoblast function by regulating alkaline phosphatase (ALP) and restoring TNF-α-suppressed osteoblast proliferation and osteogenic potential. Thus, luteolin and baicalein-rich PLH inhibits osteoclast differentiation but promotes the function of osteoblasts. Collectively, our data provide new evidence that suggests that PLH may be a valuable anti-osteoporosis agent.  相似文献   

14.
Staphylococcus aureus (S. aureus)-induced acute lung injury (ALI) is a serious disease that has a high risk of death among infants and teenagers. Acetylharpagide, a natural compound of Ajuga decumbens Thunb. (family Labiatae), has been found to have anti-tumor, anti-inflammatory and anti-viral effects. This study investigates the therapeutic effects of acetylharpagide on S. aureus-induced ALI in mice. Here, we found that acetylharpagide alleviated S. aureus-induced lung pathological morphology damage, protected the pulmonary blood-gas barrier and improved the survival of S. aureus-infected mice. Furthermore, S. aureus-induced myeloperoxidase (MPO) activity of lung homogenate and pro-inflammatory factors in bronchoalveolar lavage (BAL) fluid were suppressed by acetylharpagide. Mechanically, acetylharpagide inhibited the interaction between polyubiquitinated receptor interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO), thereby suppressing NF-κB activity. In summary, these results show that acetylharpagide protects mice from S. aureus-induced ALI by suppressing the NF-κB signaling pathway. Acetylharpagide is expected to become a potential treatment for S. aureus-induced ALI.  相似文献   

15.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

16.
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.  相似文献   

17.
The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1β, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1β, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD.  相似文献   

18.
The main purpose of this study was to investigate whether the blockade of the interaction between the receptor activator of nuclear factor-κB (NF-ĸB) ligand (RANKL) and its receptor RANK as well as the blockade of NF-κB inhibitor kinase (IKK) and of NF-κB translocation have the potential to suppress the pathogenesis of allergic asthma by inhibition and/or enhancement of the production by CD4+ and CD8+ T cells of important cytokines promoting (i.e., IL-4 and IL-17) and/or inhibiting (i.e., IL-10 and TGF-β), respectively, the development of allergic asthma. Studies using ovalbumin(OVA)-immunized mice have demonstrated that all the tested therapeutic strategies prevented the OVA-induced increase in the absolute number of IL-4- and IL-17-producing CD4+ T cells (i.e., Th2 and Th17 cells, respectively) indirectly, i.e., through the inhibition of the clonal expansion of these cells in the mediastinal lymph nodes. Additionally, the blockade of NF-κB translocation and RANKL/RANK interaction, but not IKK, prevented the OVA-induced increase in the percentage of IL-4-, IL-10- and IL-17-producing CD4+ T cells. These latter results strongly suggest that both therapeutic strategies can directly decrease IL-4 and IL-17 production by Th2 and Th17 cells, respectively. This action may constitute an important mechanism underlying the anti-asthmatic effect induced by the blockade of NF-κB translocation and of RANKL/RANK interaction. Thus, in this context, both these therapeutic strategies seem to have an advantage over the blockade of IKK. None of the tested therapeutic strategies increased both the absolute number and frequency of IL-10- and TGF-β-producing Treg cells, and hence they lacked the potential to inhibit the development of the disease via this mechanism.  相似文献   

19.
Bisphenol A (BPA) is a typical environmental endocrine disruptor that exhibits estrogen-mimicking, hormone-like properties and can cause the collapse of bone homeostasis by an imbalance between osteoblasts and osteoclasts. Various BPA substitutes, structurally similar to BPA, have been used to manufacture ‘BPA-free’ products; however, the regulatory role of BPA alternatives in osteoclast differentiation still remains unelucidated. This study aimed to investigate the effects of these chemicals on osteoclast differentiation using the mouse osteoclast precursor cell line RAW 264.7. Results confirmed that both BPA and its alternatives, bisphenol F and tetramethyl bisphenol F (TMBPF), were nontoxic to RAW 264.7 cells. In particular, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell staining and activity calculation assays revealed that TMBPF enhanced osteoclast differentiation upon stimulation of the receptor activator of nuclear factor-kappa B ligand (RANKL). Additionally, TMBPF activated the mRNA expression of osteoclast-related target genes, such as the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CtsK). Western blotting analysis indicated activation of the mitogen-activated protein kinase signaling pathway, including phosphorylation of c-Jun N-terminal kinase and p38. Together, the results suggest that TMBPF enhances osteoclast differentiation, and it is critical for bone homeostasis and skeletal health.  相似文献   

20.
Punica granatum L. (Punicaceae) is a popular fruit all over the world. Owning to its enriched polyphenols, P. granatum has been widely used in treating inflammation-related diseases, such as cardiovascular diseases and cancer. Twenty polyphenols, containing nine unreported ones, named punicagranins A–I (1–9), along with eleven known isolates (10–20), were obtained from the peels. Their detailed structures were elucidated based on UV, IR, NMR, MS, optical rotation, ECD analyses and chemical evidence. The potential anti-inflammatory activities of all polyphenols were examined on a lipopolysaccharide (LPS)-induced inflammatory macrophages model, which indicated that enhancing nitric oxide (NO) production in response to inflammation stimulated in RAW 264.7 cells was controlled by compounds 1, 3, 5–8, 10, 11, 14 and 16–20 in a concentration-dependent manner. The investigation of structure–activity relationships for tannins 6–8 and 12–20 suggested that HHDP, flavogallonyl and/or gallagyl were key groups for NO production inhibitory activity. Western blotting indicated that compounds 6–8 could down-regulate the phosphorylation levels of proteins p38 MAPK, IKKα/β, IκBα and NF-κB p65 as well as inhibit the levels of inflammation-related cytokines and mediators, such as IL-6, TNF-α, iNOS and COX-2, at the concentration of 30 μM. In conclusion, polyphenols are proposed to be the potential anti-inflammatory active ingredients in P. granatum peels, and their molecular mechanism is likely related to the regulation of the p38 MAPK and NF-κB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号