首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extra-virgin olive oils contain many bioactive substances that are phenolic compounds. The survival of Arcobacter-like strains in non-buffered (WEOO) and buffered (BEOO) extracts of olive oils were studied. Time kill curves of different strains were measured in the environment of olive oil extracts of different grades. The activity of the extracts was also monitored for biofilm formation using the Christensen method. In vitro results revealed that extra-virgin olive oil extracts exhibited the strongest antimicrobial effects, especially non-buffered extracts, which exhibited strain inhibition after only 5 min of exposure. The weakest inhibitory effects were observed for olive oil extracts. A decrease in biofilm formation was observed in the environment of higher WEOO concentrations, although at lower concentrations of extracts, increased biofilm formation occurred due to stress conditions. The dialdehydic forms of oleuropein derivatives, hydroxytyrosol, and tyrosol were the main compounds detected by HPLC-CoulArray. The results indicate that not all olive oils had a similar bactericidal effect, and that bioactivity primarily depended on the content of certain phenolic compounds.  相似文献   

2.
The misused antimicrobial agents can lead to the emergence of antibiotic-resistant pathogens, fueling an ever-increasing need for new drugs. Chemical compounds in plants can act as a source of new antimicrobial. The activity of six plants had been studied on ten microbes by broth microdillution method. Time-kill test of ethanolic extract of Anredera cordifolia was performed against Bacillus subtilis, Escherichia coli, MRCNS, dan Pseudomonas aeruginosa. Time-kill test of ethanolic extract of Tinospora tuberculata was performed against MRCNS. The results showed that the minimum inhibitory concentrations (MIC) of ethanolic extracts were different for each microbe. Killing curve determination showed that ethanolic extract of A. cordifolia leaves and T. tuberculata stem could inhibit the growth of tested bacteria. The greatest inhibitory action was produced by Tinospora tuberculata and Zingiber officinale against Pseudomonas aeruginosa. Killing curve determination showed that ethanolic extract of A. cordifolia leaves and T. tuberculata stem had bacteriostatic effect against tested bacteria. T. tuberculata and A. cordifolia are potential to be developed as an antibacterial drug.  相似文献   

3.
The objective of this study was to investigate the antimicrobial activities of essential oil-based microemulsions in the wash water against Escherichia coli O157:H7 and Pseudomonas fluorescens on Iceberg lettuce. Evaluated wash microemulsions included oregano oil, lemongrass oil, and cinnamon oil, along with a plant-based emulsifier for improved solubility. Iceberg lettuce was inoculated for 2 min with E. coli O157:H7 (6.0 log CFU/g) or P. fluorescens (6.0 log CFU/g) and then dip-treated in a phosphate buffered saline (PBS) control, 50 ppm chlorine, 3% hydrogen peroxide treatment or a 0.1%, 0.3%, or 0.5% microemulsion solution. Treated leaves were stored at 4 °C, and analyzed for surviving bacteria on days 0, 3, 7, 10, 14, 21, and 28. Efficacies of the antimicrobials were concentration and storage-time dependent. There was a 1.26–4.86 log CFU/g reduction in E. coli O157:H7 and significant reductions (0.32–2.35 log CFU/g) in P. fluorescens during storage at days 0–28 (p < 0.05). The 0.1% oregano oil microemulsion resulted in the best visual appeal in Iceberg leaves inoculated with E. coli O157:H7 and showed better improvement in the quality of the Iceberg leaves inoculated with spoilage bacteria P. fluorescens. The results suggest that 0.5% cinnamon and 0.3% oregano oil treatments have the potential to provide natural, eco-friendly, and effective alternatives to chemicals for the decontamination of leafy greens, eliminating E. coli O157:H7 and P. fluorescens.  相似文献   

4.
The Arabian desert is rich in different species of medicinal plants, which approved variable antimicrobial activities. Phoenix dactylifera L. is one of the medical trees rich in phenolic acids and flavonoids. The current study aimed to assess the antibacterial and antifungal properties of the silver nanoparticles (AgNPs) green-synthesized by two preparations (ethanolic and water extracts) from palm leaves. The characteristics of the produced AgNPs were tested by UV-visible spectroscopy and Transmitted Electron Microscopy (TEM). The antifungal activity of Phoenix dactylifera L. was tested against different species of Candida. Moreover, its antibacterial activity was evaluated against two Gram-positive and two Gram-negative strains. The results showed that AgNPs had a spherical larger shape than the crude extracts. AgNPs, from both preparations, had significant antimicrobial effects. The water extract had slightly higher antimicrobial activity than the ethanolic extract, as it induced more inhibitory effects against all species. That suggests the possible use of palm leaf extracts against different pathogenic bacteria and fungi instead of chemical compounds, which had economic and health benefits.  相似文献   

5.
Dipteryx odorata and Dipteryx punctata are species native to the Amazonian, traded by extractivists to obtain coumarin. We aimed to analyze the presence of coumarin in the ethanolic extracts of leaves, branches and fruits of D. odorata and D. punctata and to evaluate the antimicrobial activity of these extracts against phytopathogenic fungi and bacteria of clinical interest. Chemical analyses were performed by thin layer chromatography (TLC) and by gas chromatography coupled to mass spectrometry (GC-MS). For the antifungal assays, the fungi used were Cercospora longissima, Colletotrichum gloeosporioides, two isolates of Fusarium spp. and Sclerotium rolfsii, and the antibacterial assay was performed using the minimum inhibitory concentration (MIC) test with Burkholderia cepacia, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus bacteria. In D. odorata seed extracts and in D. punctata husks, endocarps, and seeds, we identified 1,2-benzopyrone. D. odorata endocarp extracts and D. punctata seeds provided the greatest decrease in mycelial growth of the evaluated phytopathogens, showing promise as an alternative control. The husk and endocarp extracts of both species had a weak effect on E. coli. This research is the first to compare the different parts of species of the genus Dipteryx and to evaluate the use of husks and endocarps of D. punctata fruits to obtain coumarin. Chemical analyses used to quantify the compounds existing in the extracts, and tests with phytopathogens in vitro and in vivo are currently being carried out.  相似文献   

6.
Fungal infections of cultivated food crops result in extensive losses of crops at the global level, while resistance to antifungal agents continues to grow. Supercritical fluid extraction using CO2 (SFE-CO2) has gained attention as an environmentally well-accepted extraction method, as CO2 is a non-toxic, inert and available solvent, and the extracts obtained are, chemically, of greater or different complexities compared to those of conventional extracts. The SFE-CO2 extracts of Achillea millefolium, Calendula officinalis, Chamomilla recutita, Helichrysum arenarium, Humulus lupulus, Taraxacum officinale, Juniperus communis, Hypericum perforatum, Nepeta cataria, Crataegus sp. and Sambucus nigra were studied in terms of their compositions and antifungal activities against the wheat- and buckwheat-borne fungi Alternaria alternata, Epicoccum nigrum, Botrytis cinerea, Fusarium oxysporum and Fusarium poae. The C. recutita and H. arenarium extracts were the most efficacious, and these inhibited the growth of most of the fungi by 80% to 100%. Among the fungal species, B. cinerea was the most susceptible to the treatments with the SFE-CO2 extracts, while Fusarium spp. were the least. This study shows that some of these SFE-CO2 extracts have promising potential for use as antifungal agents for selected crop-borne fungi.  相似文献   

7.
Rosa gallica var. aegyptiaca is a species of flowering plant belonging to the Rosaceae family that plays an important role as a therapeutic agent for the treatment of specific types of cancer, microbial infections, and diabetes mellitus. This work presents the first report on the evaluation of the antioxidant and antimicrobial potential along with the phytochemical analysis of Rosa gallica var. aegyptiaca leaves. Five leaf extracts of hexane, chloroform, methanol, hydromethanol 80%, and water were prepared. Assessment of antioxidant activity was carried out via DPPH radical scavenging assay. Antimicrobial activity against five foodborne pathogenic bacteria—including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella enteritidis—and the fungus Candida albicans, was examined using the disc diffusion method. Total phenolic content and total flavonoid content were determined using the Folin–Ciocalteu reagent and aluminum chloride methods, respectively. Isolation, identification, and quantification of phenolic compounds were performed using HPLC-DAD analysis. Amongst the five leaf extracts that were investigated, hydromethanol 80% extract possessed the highest extraction yield, antioxidant activity, total phenolic content, and antimicrobial activity against all tested microbial strains. Moreover, this extract furnished six active phenolic compounds: gallic acid (1), (+) catechin (2), chlorogenic acid (3), (–) epicatechin (4), quercetin-3-O-α-d-(glucopyranoside) (5), and quercetin (6). This study provides an alternative utilization of R. gallica var. aegyptiaca leaves as a readily accessible source of natural antioxidants and antimicrobials in the food and pharmaceutical industries.  相似文献   

8.
Globally there are a larger number of strains of microorganisms resistant to multiple drugs mainly due to misuse and indiscriminate, resulting in increased morbidity, costs inherent benefits of health care, as well as mortality rates for infections. As a result of this a large number of researches have been conducted emphasizing the antimicrobial properties of plant products. In this study, the ethanol extract and hexane fraction of Dalbergia ecastophyllum (L.) Taub. (Leguminosae) have been used to evaluate the antibacterial and antifungal activity and for modulating the resistance of antimicrobials against bacterial strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans and fungal strains of Candida krusei, Candida tropicalis. The antibacterial and modulatory activity was determined by microdilution. Inhibition of the growth of bacteria and fungi tested extract was ?1024. The activity was enhanced when aminoglycosides were associated with sub-inhibitory concentrations of the ethanol extract and hexane fraction of Dalbergia ecastophyllum. Therefore, it is suggested that the ethanol extract and hexane fraction of Dalbergia ecastophyllum (L.) Taub. (Leguminosae) can be used as a source of natural products with a view to changing the resistance of these microorganisms to antimicrobials.  相似文献   

9.
The aim of this study was to identify polyphenolic compounds contained in ethanol and water extracts of black alder (Alnus glutinosa L.) acorns and evaluate their anti-cancer and antimicrobial effects. The significant anti-cancer potential on the human skin epidermoid carcinoma cell line A431 and the human epithelial cell line A549 derived from lung carcinoma tissue was observed. Aqueous and ethanolic extracts of alder acorns inhibited the growth of mainly Gram-positive microorganisms (Staphylococcus aureus, Bacillus subtilis, Streptococcus mutans) and yeast-like fungi (Candida albicans, Candida glabrata), as well as Gram-negative (Escherichia coli, Citrobacter freundii, Proteus mirabilis, Pseudomonas aeruginosa) strains. The identification of polyphenols was carried out using an ACQUITY UPLC-PDA-MS system. The extracts were composed of 29 compounds belonging to phenolic acids, flavonols, ellagitannins and ellagic acid derivatives. Ellagitannins were identified as the predominant phenolics in ethanol and aqueous extract (2171.90 and 1593.13 mg/100 g DM, respectively) The results may explain the use of A. glutinosa extracts in folk medicine.  相似文献   

10.
Streptomyces galbus ERINLG-127 was isolated from the soil samples of the Marapalam forest, Nilgiris, India. The ethyl acetate extract was subjected to activity-guided fractionation by column chromatography over silica gel. This led to the isolation of 2,3-dihydroxy-9,10-anthraquinone as the active principle. The compound showed good antimicrobial activity against tested bacteria and fungi. The minimum inhibitory concentration values of isolated compound were 12.5 μg/mL against Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, K. pneumoniae (ESBL-3971), K. pneumoniae (ESBL-3894) and Staphylococcus aureus (MRSA). The compound showed prominent cytotoxic activity in vitro against A549 lung adenocarcinoma cancer cell line. It showed 75.1 % activity at the dose of 100 μg/mL with IC50 value of 60 μg/mL. The isolated compound was subjected to molecular docking studies for the inhibition of TtgR and Topoisomerase IV enzymes which are targets for antimicrobials. Docking studies of the compound showed low docking energy indicating its usefulness as antimicrobial agent.  相似文献   

11.
Problems related with biological contamination of plant origin raw materials have a considerable effect on prevention systems at each stage of food production. Concerning the antimicrobial action of phenolic acids, studies were undertaken to investigate antibacterial properties against bacterial strains of Escherichia coli (EC), Pseudomonas fluorescence (PF), Micrococcus luteus (ML) and Proteus mirabilis (PM), as well as antifungal properties targeting microscopic fungi Fusarium spp., extracts of phenolic compounds coming from inoculated grain from various genotypes of cereals. This study evaluated the antimicrobial action of phenolic acids extracts obtained from both naturally infested and inoculated with microorganisms. For this purpose a total of 24 cereal cultivars were selected, including 9 winter and 15 spring cultivars. The analyses showed a bactericidal effect in the case of 4 extracts against Micrococcus luteus (ML), 14 extracts against Pseudomonas fluorescence (PF), 17 extracts against Escherichia coli (EC) as well as 16 extracts against Proteus mirabilis (PM). It was found that 3 out of the 24 extracts showed no antibacterial activity. In turn, fungicidal action was observed in the case of 17 extracts against Fusarium culmorum (FC) (NIV), 16 extracts against FC (3AcDON), 12 extracts against Fusarium graminearum (FG) (3AcDON), while 12 other extracts showed antifungal action against FG (NIV) and 19 extracts against Fusarium langsethiae (FL). Based on the conducted analyses it was found that grain of small-grained cereals exposed to fungal infection is a source of bioactive compounds exhibiting antimicrobial properties. It was observed that the qualitative and quantitative profiles of polyphenols vary depending on the cereal cultivar. This extracts may be used to develop an antimicrobial preparation applicable in organic farming.  相似文献   

12.
The phytochemical analysis of antioxidant and antibacterial activities of Erodium arborescens aerial part extracts constitute the focus of this research. The chemical composition of an acetone extract was investigated using LC-HESI-MS2, which revealed the presence of 70 compounds. The major identified components were tannin derivatives. Total polyphenol and total flavonoid contents were assessed in plant extracts (hexane, ethyl acetate, acetone and methanol). The results showed that the acetone extract exhibited the highest contents of polyphenols and flavonoids, 895.54 and 36.39 mg QE/g DE, respectively. Furthermore, when compared to other extracts, Erodium arborescens acetone extract was endowed with the highest antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) tests. In addition, the four extracts of Erodium arborescens showed variable degrees of antimicrobial activity against the tested strains, and the interesting activity was obtained with acetone and methanol extracts.  相似文献   

13.
Hemolytic and antibacterial activities of eight serial concentrations ranged from 5-666 µg/mL of saponin-rich extracts from guar meal (GM), quillaja, yucca, and soybean were tested in 96-well plates and read by enzyme-linked immunosorbent assay plate-well as 650 nm. Hemolytic assay used a 1% suspension of chicken red blood cells with water and phosphate buffered saline as positive and negative controls, respectively. Antibacterial activity against Staphylococcus aureus, Salmonella typhimurium, and Escherichia coli were evaluated using ampicillin and bacteria without saponin-rich extract as positive and negative controls, respectively. The 100% MeOH GM and commercial quillaja saponin-rich extracts were significantly the highest in both hemolytic and antibacterial activities against all bacteria at the same concentration tested. Soybean saponin-rich extract had no antibacterial activity against any of the bacteria at the concentrations tested while yucca saponin-rich extract had no antibacterial activity against the gram-negative bacteria at the concentrations tested. GM and quillaja saponin-rich extracts were hemolytic, while yucca and soybean saponin-rich extracts were not hemolytic at the concentrations tested. No saponin-rich extract source had antibacterial activity against S. typhimurium or E. coli at the concentrations tested. Both GM and quillaja saponin-rich extracts exhibited antibacterial activity against S. aureus. Saponin-rich extracts from different plant sources have different hemolytic and antibacterial activities.  相似文献   

14.
The potential of plant extracts as bioinsecticides has been described as a promising field of agricultural development. In this work, the extracts of Punica granatum (pomegranate), Phytolacca americana (American pokeweed), Glandora prostrata (shrubby gromwell), Ulex europaeus (gorce), Tagetes patula (French marigold), Camellia japonica red (camellia), Ruta graveolens (rue or herb-of-grace) were obtained, purified, and their activity against Spodoptera frugiperda (Sf9) insect cells was investigated. From the pool of over twenty extracts obtained, comprising different polarities and vegetable materials, less polar samples were shown to be more toxic towards the insect cell line Sf9. Among these, a dichloromethane extract of R. graveolens was capable of causing a loss of viability of over 50%, exceeding the effect of the commercial insecticide chlorpyrifos. This extract elicited chromatin condensation and the fragmentation in treated cells. Nanoencapsulation assays of the cytotoxic plant extracts in soybean liposomes and chitosan nanostructures were carried out. The nanosystems exhibited sizes lower or around 200 nm, low polydispersity, and generally high encapsulation efficiencies. Release assays showed that chitosan nanoemulsions provide a fast and total extract release, while liposome-based systems are suitable for a more delayed release. These results represent a proof-of-concept for the future development of bioinsecticide nanoformulations based on the cytotoxic plant extracts.  相似文献   

15.
Licania rigida Benth has been evaluated as an alternative drug to treat diseases associated with inflammatory processes. This study evaluated the anti-inflammatory effects of aqueous and hydroalcoholic leaf extracts of L. rigida with inflammation induced by lipopolysaccharides in in vitro and in vivo inflammation models. The phytochemical profile of the extracts, analyzed by ultra-fast liquid chromatography coupled with tandem mass spectrometry, revealed the presence of gallic and ellagic acids in both extracts, whereas isovitexin, ferulate, bulky amino acids (e.g., phenylalanine), pheophorbide, lactic acid, and pyridoxine were detected in the hydroalcoholic extract. The extracts displayed the ability to modulate in vitro and in vivo inflammatory responses, reducing approximately 50% of pro-inflammatory cytokine secretion (TNF-α, IL-1β, and IL-6), and inhibiting both NO production and leukocyte migration by approximately 30 and 40% at 100 and 500 µg/mL, respectively. Overall, the results highlight and identify, for the first time, the ability of L. rigida leaf extract to modulate inflammatory processes. These data suggest that the leaf extracts of this plant have potential in the development of herbal formulations for the treatment of inflammation.  相似文献   

16.
Bark is a major by-product of woodworking industries. The contents of several wood species are known to harbor antimicrobial, antiviral, anti-inflammatory and wound-healing capacities. The aim of this work was to identify beneficial properties of Austrian larch, birch and beech bark extracts for their potential usage as additives or active ingredients in dermatological applications. Bacterial agar diffusion assay and resazurin-based broth microdilution assay were used to evaluate anti-bacterial activity. To gain more insight into the cellular response to bark extracts, viability-, scratch-assays and ELISAs were performed. Birch and beech extracts showed strong antimicrobial activities against Gram-positive bacteria, including Cutibacterium acnes, Staphylococcus epidermidis and MRSA. Wound closure was enhanced with birch and beech extracts as compared to controls in the scratch-assays. Whereas beneficial properties of birch bark components have previously been described, the similar effects of beech extracts are novel. The combined positive effect on wound-healing and antimicrobial activity has great potential for the treatment of various skin diseases, including acne in future dermal applications.  相似文献   

17.
The purpose of this study was to identify the chemical components in root extracts of Saponaria cypria, an endemic species of Cyprus. Subsequently, the synergistic bioactivity of its root extracts through different extraction procedures was also investigated for the first time. A total of nine saponins, along with six phenolic compounds, were identified and quantified using the UHPLC/Q-TOF-MS method. Additionally, S. cypria root extracts demonstrated antibacterial potential against Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Salmonella enteritidis. S. aureus presented the highest susceptibility among all bacteria tested. These findings provide the first phytochemical data regarding the saponin, phenolic content and antimicrobial activity of S. cypria extracts, indicating that the Cyprus saponaria species is a rich natural source for bioactive compounds with a potentially wider bioactivity spectrum.  相似文献   

18.
The volatile components of areca nuts were isolated by headspace solid-phase microextraction (HS-SPME, DVB/CAR/PDMS fiber extraction) and simultaneous hydrodistillation–extraction (SHDE) and analyzed by gas chromatography/mass spectrometry. Furthermore, all SHDE fractions were tested for antimicrobial activity using the disk diffusion method on nine Gram-negative and Gram-positive bacteria (Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus canis, Streptococcus pyogenes, and Candida albicans). In total, 98 compounds (mainly alcohols, carbonyl compounds, fatty acids, esters, terpenes, terpenoids, and aliphatic hydrocarbons) were identified in SHDE fractions and by using SPME extraction Fatty acids were the main group of volatile constituents detected in all types of extracts. The microorganism most sensitive to the extract of the areca nut was Streptococcus canis. The results can provide essential information for the application of different treatments of areca nuts in the canning industry or as natural antibiotics.  相似文献   

19.
Mint species (Lamiaceae family) have been used as traditional remedies for the treatment of several diseases. In this work, we aimed to characterize the biological activities of the total phenolic and flavonoid contents of Mentha pulegium L. extracts collected from two different regions of Tunisia. The highest amounts of total phenols (74.45 ± 0.01 mg GAE/g DW), flavonoids (28.87 ± 0.02 mg RE/g DW), and condensed tannins (4.35 ± 0.02 mg CE/g DW) were found in the Bizerte locality. Methanolic leaf extracts were subjected to HPLC-UV analysis in order to identify and quantify the phenolic composition. This technique allowed us to identify seven phenolic compounds: two phenolic acids and five flavonoid compounds, such as eriocitrin, hesperidin, narirutin, luteolin, and isorhoifolin, which were found in both extracts with significant differences between samples collected from the different regions (p < 0.05). Furthermore, our results showed that the methanolic extract from leaves collected from Bizerte had the highest antioxidant activities (DPPH IC50 value of 16.31 μg/mL and 570.08 μmol Fe2+/g, respectively). Both extracts showed high radical-scavenging activity as well as significant antimicrobial activity against eight tested bacteria. The highest antimicrobial activities were observed against Gram-positive bacteria with inhibition zone diameters and MIC values ranging between 19 and 32 mm and 40 and 160 µg/mL, respectively. Interestingly, at 10 μg/mL, the extract had a significant effect on cell proliferation of U87 human glioblastoma cells. These findings open perspectives for the use of Mentha pulegium L. extract in green pharmacy, alternative/complementary medicine, and natural preventive therapies for the development of effective antioxidant, antibacterial, and/or antitumoral drugs.  相似文献   

20.
Nigella species are widely used to cure various ailments. Their health benefits, particularly from the seed oils, could be attributed to the presence of a variety of bioactive components. Roasting is a critical process that has historically been used to facilitate oil extraction and enhance flavor; it may also alter the chemical composition and biological properties of the Nigella seed. The aim of this study was to investigate the effect of the roasting process on the composition of the bioactive components and the biological activities of Nigella arvensis and Nigella sativa seed extracts. Our preliminary study showed that seeds roasted at 50 °C exhibited potent antimicrobial activities; therefore, this temperature was selected for roasting Nigella seeds. For extraction, raw and roasted seed samples were macerated in methanol. The antimicrobial activities against Streptococcus agalactiae, Streptococcus epidermidis, Streptococcus pyogenes, Candida albicans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, and Klebsiella oxytoca were determined by measuring the diameter of the zone of inhibition. The cell viability of extracts was tested in a colon carcinoma cell line, HCT-116, by using a microculture tetrazolium technique (MTT) assay. Amino acids were extracted and quantified using an automatic amino acid analyzer. Then, gas chromatography–mass spectrometry (GC–MS) analysis was performed to identify the chemical constituents and fatty acids. As a result, the extracts of raw and roasted seeds in both Nigella species showed strong inhibition against Klebsiella oxytoca, and the raw seed extract of N. arvensis demonstrated moderate inhibition against S. pyogenes. The findings of the MTT assay indicated that all the extracts significantly decreased cancer cell viability. Moreover, N. sativa species possessed higher contents of the measured amino acids, except tyrosine, cystine, and methionine. The GC–MS analysis of extracts showed the presence of 22 and 13 compounds in raw and roasted N. arvensis, respectively, and 9 and 11 compounds in raw and roasted N. sativa, respectively. However, heat treatment decreased the detectable components to 13 compounds in roasted N. arvensis and increased them in roasted N. sativa. These findings indicate that N. arvensis and N. sativa could be potential sources of anticancer and antimicrobials, where the bioactive compounds play a pivotal role as functional components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号