首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we propose a spectrum-sharing protocol for a cooperative cognitive radio network based on non-orthogonal multiple access technology, where the base station (BS) transmits the superimposed signal to the primary user and secondary user with/without the assistance of a relay station (RS) by adopting the decode-and-forward technique. RS performs discrete-time energy harvesting for opportunistically cooperative transmission. If the RS harvests sufficient energy, the system performs cooperative transmission; otherwise, the system performs direct transmission. Moreover, the outage probabilities and outage capacities of both primary and secondary systems are analyzed, and the corresponding closed-form expressions are derived. In addition, one optimization problem is formulated, where our objective is to maximize the energy efficiency of the secondary system while ensuring that of the primary system exceeds or equals a threshold value. A joint optimization algorithm of power allocation at BS and RS is considered to solve the optimization problem and to realize a mutual improvement in the performance of energy efficiency for both the primary and secondary systems. The simulation results demonstrate the validity of the analysis results and prove that the proposed transmission scheme has a higher energy efficiency than the direct transmission scheme and the transmission scheme with simultaneous wireless information and power transfer technology.  相似文献   

2.
A novel Radio On Fiber(ROF) access is proposed and demonstrated which enables the pico-cell Base Station (BS) for high-speed wireless communications to eliminate external electric power supply facilities. We demonstrated 2.4-GHz band radio signal transmission through the BS without external electric power supply. The electrical power used for BS circuit is feeded by optical power over optical fiber from central station.  相似文献   

3.
Cooperative communication technology has realized the enhancement in the wireless communication system’s spectrum utilization rate without resorting to any additional equipment; additionally, it ensures system reliability in transmission, increasingly becoming a research focus within the sphere of wireless sensor networks (WSNs). Since the selection of relay is crucial to cooperative communication technology, this paper proposes two different relay selection schemes subject to deep reinforcement learning (DRL), in response to the issues in WSNs with relay selection in cooperative communications, which can be summarized as the Deep-Q-Network Based Relay Selection Scheme (DQN-RSS), as well as the Proximal Policy Optimization Based Relay Selection Scheme (PPO-RSS); it further compared the commonly used Q-learning relay selection scheme (Q-RSS) with random relay selection scheme. First, the cooperative communication process in WSNs is modeled as a Markov decision process, and DRL algorithm is trained in accordance with the outage probability, as well as mutual information (MI). Under the condition of unknown instantaneous channel state information (CSI), the best relay is adaptively selected from multiple candidate relays. Thereafter, in view of the slow convergence speed of Q-RSS in high-dimensional state space, the DRL algorithm is used to accelerate the convergence. In particular, we employ DRL algorithm to deal with high-dimensional state space while speeding up learning. The experimental results reveal that under the same conditions, the random relay selection scheme always has the worst performance. And compared to Q-RSS, the two relay selection schemes designed in this paper greatly reduce the number of iterations and speed up the convergence speed, thereby reducing the computational complexity and overhead of the source node selecting the best relay strategy. In addition, the two relay selection schemes designed and raised in this paper are featured by lower-level outage probability with lower-level energy consumption and larger system capacity. In particular, PPO-RSS has higher reliability and practicability.  相似文献   

4.
Energy harvesting (EH) is a promising technique to extend the lifetime energy-constrained devices in wireless networks. This paper analyses the significance of relay selection and non-linear EH in evaluating the performance of Full-duplex (FD) decode-and-forward (DF) multi-relay cooperative network. The relay selection is considered under three scenarios based on channel state information (CSI) availability. We compare the EH performance of a hybrid power-time-splitting (PTS)-based non-linear energy harvester with time-spitting (TS) and power-splitting (PS) EH at the relay node. We derive the expression of outage probability (OP) of FD DF multi-relay cooperative network over independent and identically distributed Rayleigh fading channels. Numerical results show that the outage performance of the system is significantly enhanced by deploying an ideal relay selection scheme. This paper also gives insights about the combined effect of saturation threshold of non-linear EH and residual self-interference (RSI) on the system performance. Unlike linear EH systems, the non-linear EH causes the outage floor even when the RSI is significantly small. The response of the system is also analysed for the impact of TS and PS ratios. Furthermore, we also investigate the system’s performance in terms of other system parameters like the number of relays and data transfer rate. Monte Carlo simulations are used to verify the analytical expressions.  相似文献   

5.
In this paper, we propose a static hybrid amplify and forward (AF) and decode and forward (DF) relaying protocol for cooperative systems. In such a scheme, relays close to the source amplify the received signal whereas the remaining relays transmit only if they decode correctly. We consider two subclasses of the proposed hybrid AF–DF relaying protocol. In the first one, all AF relays and DF relays that have decoded correctly transmit using orthogonal channels. The second protocol, called opportunistic hybrid AF–DF relaying, consists in activating only the relay offering the highest instantaneous signal to noise ratio (SNR) among AF relays and the relays that have decoded correctly. The outage SNR probability, and the exact and asymptotic bit error probability (BEP) values of both all-participating and opportunistic hybrid AF–DF relaying protocols are derived and compared to conventional AF and DF relaying. The proposed protocol offers better performance than AF relaying and similar performance to DF relaying with a lower computational complexity. Simulation results are also provided to verify the tightness of the derived results.  相似文献   

6.
Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can not only effectively improve the spectrum efficiency and energy efficiency of wireless networks but also extend their coverage. An important design issue is to incentivize a full duplex (FD) relaying center user to participate in the cooperative process and achieve a win–win situation for both the base station (BS) and the center user. Some private information of the center users are hidden from the BS in the network. A contract theory-based incentive mechanism under this asymmetric information scenario is applied to incentivize the center user to join the cooperative communication to maximize the BS’s benefit utility and to guarantee the center user’s expected payoff. In this work, we propose a matching theory-based Gale–Shapley algorithm to obtain the optimal strategy with low computation complexity in the multi-user pairing scenario. Simulation results indicate that the network performance of the proposed FD cooperative NOMA and SWIPT communication is much better than the conventional NOMA communication, and the benefit utility of the BS with the stable match strategy is nearly close to the multi-user pairing scenario with complete channel state information (CSI), while the center users get the satisfied expected payoffs.  相似文献   

7.
The objective of this paper is to propose techniques for enhancing the physical layer security (PLS) performance of half-duplex cooperative non-orthogonal multiple access (HD-CNOMA) network in the presence of an external passive eavesdropper. We propose an artificial noise (AN)-aided framework and derive approximate analytical expressions for the secrecy outage probabilities (SOPs) of the downlink users. It is demonstrated that the proposed AN-aided framework significantly reduces the SOPs of the users and completely resolves the zero-diversity order problem, which is prevalent in HD-CNOMA network without AN. To further enhance the PLS performance, we determine optimal power allocation coefficients (OPACs) for the downlink users at the base station (BS) that minimizes the system SOP (SSOP) of the AN-aided HD-CNOMA network. With the help of extensive numerical and simulation investigations, it is shown that the proposed OPAC leads to significant reduction of the SSOP, while lowering the SOPs of the users, compared to random/equal setting of the PACs.  相似文献   

8.
In this paper, symbol-error-rate (SER) performance analysis is provided for decode-and-forward (DF) and amplify-and-forward (AF) cooperation schemes in wireless networks with imperfect channel information. We derive closed-form SER formulations for a single relay system with square MQAM signals in a flat Rayleigh fading channel. Moreover, closed-form and high SNR tight SER approximations are established to show the asymptotic performance of the cooperation protocols. Simulations and comparisons verify that these approximations lead to similar results to those from the exact SER formulations for different power allocation methods. Furthermore, based on these SER performance analyses, we determine the optimum power allocation for the AF and DF cooperation scenarios.  相似文献   

9.
Secure transmission in wireless networks is a big critical issue due to the broadcast nature of the wireless propagation environment. In this paper, the physical layer security performance in a mixed radio frequency (RF)/free space optical (FSO) system under multiple eavesdroppers is investigated. The RF links and FSO link within the system are assumed to respectively undergo Nakagami-m and Gamma–Gamma fading distributions. The two practical eavesdroppers scenarios considered includes: Colluding and Non-colluding in which their channel state information is unavailable at the source. The closed-form expressions for the lower bound security outage probability and the strictly positive secrecy capacity under both scenarios are derived by utilizing the system end-to-end cumulative distribution function and eavesdroppers’ probability density function. The results show that the increase in the number of eavesdroppers under both scenarios profoundly degrades the system secrecy performance. Moreover, it is demonstrated that both the atmospheric turbulence and pointing errors affect the concerned system secrecy and the impact of RF fading parameters is also presented. The accuracy of the numerical results obtained is validated by Montel-Carol simulations.  相似文献   

10.
With the rapid development of the Internet of Things (IoT) and the increasing number of wireless nodes, the problems of scare spectrum and energy supply of nodes have become main issues. To achieve green IoT techniques and resolve the challenge of wireless power supply, wireless-powered backscatter communication as a promising transmission paradigm has been concerned by many scholars. In wireless-powered backscatter communication networks, the passive backscatter nodes can harvest the ambient radio frequency signals for the devices’ wireless charging and also reflect some information signals to the information receiver in a low-power-consumption way. To balance the relationship between the amount of energy harvesting and the amount of information rate, resource allocation is a key technique in wireless-powered backscatter communication networks. However, most of the current resource allocation algorithms assume available perfect channel state information and limited spectrum resource, it is impractical for actual backscatter systems due to the impact of channel delays, the nonlinearity of hardware circuits and quantization errors that may increase the possibility of outage probability. To this end, we investigate a robust resource allocation problem to improve system robustness and spectrum efficiency in a cognitive wireless-powered backscatter communication network, where secondary transmitters can work at the backscattering transmission mode and the harvest-then-transmit mode by a time division multiple access manner. The total throughput of the secondary users is maximized by jointly optimizing the transmission time, the transmit power, and the reflection coefficients of secondary transmitters under the constraints on the throughput outage probability of the users. To tackle the non-convex problem, we design a robust resource allocation algorithm to obtain the optimal solution by using the proper variable substitution method and Lagrange dual theory. Simulation results verify the effectiveness of the proposed algorithm in terms of lower outage probabilities.  相似文献   

11.
This paper studies artificial noise (AN)-aided beamforming design in an intelligent reflecting surface (IRS)-assisted system empowered by simultaneous wireless information and power transfer (SWIPT) technique. Multiple power splitting (PS) single-antenna receivers simultaneously receive information and energy from a multi-antenna base station (BS). Although all users are legitimate, in each transmission interval only one receiver is authorized to receive information and the others are only allowed to harvest power which are considered as unauthorized receivers (URs). To prevent information decoding by URs, AN signal is transmitted from the BS. We adopt a non-linear model for energy harvesting. In the optimization problem, we minimize the total transmit power, and for this purpose, we utilize an alternating optimization (AO) algorithm. For the non-convex rank-one constraint for IRS phase shifts, we utilize a sequential rank-one constraint relaxation (SROCR) algorithm. In addition to single antenna URs scenario, we investigate multi-antenna URs scenario and evaluate their performance. Simulation results validate the effectiveness of using IRS.  相似文献   

12.
In this research paper, we propose a two-hop integrated radio frequency–visible light communication (RF–VLC) system which may provide a better option to transceive between the hospitals and some laboratory to transfer patient’s information. In the proposed system model, the data (such as patient’s lab test reports) is transmitted towards the amplify and forward (AF) relay mounted on the top of the hospital building via the RF channel. Further, the AF relay amplifies and converts the received information into corresponding optical signal using light emitting diodes (LED) and supporting circuitry. This optical signal is then forwarded towards the destination device (equipped with VLC transceiver), via the VLC channel. To analyse the performance of the system, we first derive the closed form analytical expressions for the cumulative distribution function (CDF) of the end-to-end (e2e) signal to noise ratio (SNR) of the system by using the moment generating function (MGF) of the SNR of the individual RF and VLC channels. Further, we use these statistical expressions to obtain the outage probability, average bit error rate (BER) and the average capacity of the system. Moreover, the asymptotic performance of the proposed system is also analysed to study the system’s behaviour at high SNR regimes. Finally, we studied the impact of the variations in channel parameters on the proposed system model performance through numerically simulated plots.  相似文献   

13.
In this paper, we study the cooperative communication of a cognitive underlay network by utilizing the diversity of multiple spectrum bands. In particular, we assume that the transmission power of the secondary user (SU) is subject to different joint constraints, such as peak interference power of the multiple primary users (PUs), peak transmission power of the SU, outage tolerate interference, and outage probability threshold. Accordingly, two power allocation schemes are considered on the basis of the minimum interference channel from the SU to the PU and the channel state information of the primary user link. Furthermore, the SU can select one of the three transmission modes following the channel state conditions, namely as cellular, device-to-device, or switching mode, to transmit the signal to the secondary user receiver. Given this setting, two power allocation schemes over a spectrum band selection strategy are derived. In addition, closed-form expressions for the outage probability of three modes are also obtained to evaluate the performance of the secondary network. Most importantly, a closed-form expression for the peak interference power level of the PU, which is considered as one of the most important parameters to control the SU’s transmission power, is derived by investigating the relation of two considered power allocation schemes in the practise. Finally, numerical examples show that the outage performance of secondary network in the switching mode outperforms the one of the cellular and device-to-device (D2D) mode for all considered power allocation schemes.  相似文献   

14.
We have proposed and demonstrated a novel Mach-Zehnder modulation technique which employs a 1 × 4 multimode interference MMI coupler and four optical phase-modulator waveguides to generate optical single sideband (SSB) signals in radio-over-fiber (ROF) transmission link. It is shown that when the RF (radio frequency) modulation index is large, the optical SSB signal generated by conventional modulation scheme contains a significant part of undesired higher order harmonics, accordingly, much distortion in the RF signal was detected at the base station (BS). However, the main undesired higher order harmonics can be suppressed using our proposed modulation scheme and the performance of the transmission links were largely improved in single-channel and dense wavelength-division multiplexing (DWDM) cases.  相似文献   

15.
This paper investigates the performance of hybrid radio frequency/millimeter wave (RF/mmWave) satellite–terrestrial relay network with non-orthogonal multiple access (NOMA) scheme. In particular, the satellite network operates at the Ka-band while the mmWave band is adopted at decode-and-forward (DF) relay–destination link. The blockage effect in mmWave communication is considered to deduce the ordered probability density function (PDF) of the user equipment (UE) distance. However, the randomness of the UEs’ location and the random beamforming design cause the difficulty of the performance analysis. Herein, we provide a closed-form approximation for the outage probability. Moreover, the system diversity order is derived from the asymptotic expressions of the outage probability at high signal-to-noise ratio (SNR) slopes. Besides, approximate ergodic capacity performances of the multi-UEs are evaluated with numerical integration. Simulations are applied to demonstrate the accuracy of the theoretical analysis and show that the performance of the ordered selection NOMA scheme outperforms the orthogonal multiple access scheme and random selection scheme.  相似文献   

16.
Limited energy has always been an important factor restricting the development of wireless sensor networks. The unbalanced energy consumption of nodes will accelerate the death of some nodes. To solve the above problems, an adaptive routing algorithm for energy collection sensor networks based on distributed energy saving clustering (DEEC) is proposed. In each hop of data transmission, the optimal mode is adaptively selected from four transmission modes: single-hop cooperative, multi-hop cooperative, single-hop non-cooperative and multi-hop non-cooperative, so as to reduce and balance the energy consumption of nodes. The performance of the proposed adaptive multi-mode transmission method and several benchmark schemes are evaluated and compared by computer simulation, where a few performance metrics such as the network lifetime and throughput are adopted. The results show that, the proposed method can effectively reduce the energy consumption of the network and prolong the network lifetime; it is superior to various benchmark schemes.  相似文献   

17.
In this paper, the optimization of network performance to support the deployment of federated learning (FL) is investigated. In particular, in the considered model, each user owns a machine learning (ML) model by training through its own dataset, and then transmits its ML parameters to a base station (BS) which aggregates the ML parameters to obtain a global ML model and transmits it to each user. Due to limited radio frequency (RF) resources, the number of users that participate in FL is restricted. Meanwhile, each user uploading and downloading the FL parameters may increase communication costs thus reducing the number of participating users. To this end, we propose to introduce visible light communication (VLC) as a supplement to RF and use compression methods to reduce the resources needed to transmit FL parameters over wireless links so as to further improve the communication efficiency and simultaneously optimize wireless network through user selection and resource allocation. This user selection and bandwidth allocation problem is formulated as an optimization problem whose goal is to minimize the training loss of FL. We first use a model compression method to reduce the size of FL model parameters that are transmitted over wireless links. Then, the optimization problem is separated into two subproblems. The first subproblem is a user selection problem with a given bandwidth allocation, which is solved by a traversal algorithm. The second subproblem is a bandwidth allocation problem with a given user selection, which is solved by a numerical method. The ultimate user selection and bandwidth allocation are obtained by iteratively compressing the model and solving these two subproblems. Simulation results show that the proposed FL algorithm can improve the accuracy of object recognition by up to 16.7% and improve the number of selected users by up to 68.7%, compared to a conventional FL algorithm using only RF.  相似文献   

18.
In this paper, we investigate the energy efficiency (EE) performance of non-orthogonal multiple access (NOMA) enabled full-duplex (FD) coordinated direct and relay transmission (CDRT) system (i.e., NOMA-FD-CDRT system). Firstly, we consider a two-user scenario, where the base station (BS) can directly communicate with the near user, while it requires the help of a dedicated FD relay node to communicate with the far user. In the second part, we consider that there are two near users and two far users in the system. To improve the EE, we consider integrating the simultaneous wireless information and power transfer (SWIPT) technique at the FD relay. We formulate an analytical expression for the overall EE of the SWIPT-assisted NOMA-FD-CDRT system. We determine optimal power allocation (OPA) for the downlink users at the BS that maximizes the EE. An iterative algorithm based on Dinkelbach method is proposed to determine the OPA vector. With the help of detailed numerical and simulation investigations, it is demonstrated that the proposed OPA can provide significant enhancement of EE of the considered SWIPT-assisted NOMA-FD-CDRT system.  相似文献   

19.
This paper considers a multi-user wireless communication network supported by a multiple-antenna base station (BS), where the users who are located sufficiently close to the BS employ wireless energy harvesting (EH) to replenish their energy needs. The objective of this work is to design an efficient beamforming to maximize the minimum throughput among all the information users (IUs), subject to EH constraints. In this regard, transmit time-switching approach is employed, where energy and information are transmitted over different fractions of a time-slot. To achieve efficient EH, a conjugate beamforming (matched filtering) is applied. To design efficient information beamforming for max–min throughput optimization, conventional zero-forcing (ZF) beamforming can be adopted, however, it will not suppress multi-user interference if the number of users is greater than the number of antennas at the BS. To this end, different from the existing works which employ regularized zero-forcing (RZF) beamforming, this work proposes a new generalized zero-forcing (GZF) beamforming, which promises better max–min throughput compared to that achieved by the RZF beamforming. A new path-following algorithm is developed to achieve max–min throughput optimization by GZF beamforming, which is based on a simple convex quadratic program over each iteration.  相似文献   

20.
An opportunistic routing problem in a cognitive radio ad hoc network is investigated with an aim to minimize the interference to primary users (PUs) and under the constraint of a minimum end-to-end data rate for secondary users (SUs). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying techniques are considered for message forwarding by SU nodes in the network. Unlike popular transmit power control based solutions for interference management in cognitive radio networks, we adopt a cross layer approach. The optimization problem is formulated as a joint power control, channel assignment and route selection problem. Next, closed form expression for transmission power is derived and corresponding channel selection scheme and routing metric are designed based on this solution. The proposed route selection schemes are shown to depend not only on gains of the interference channels between SUs and PUs but also on the values of the spectrum sensing parameters at the SU nodes in the network. Two distributed routing schemes are proposed based on our analysis; (i) optimal_DF and (ii) suboptimal_AF. The routing schemes could be implemented using existing table driven as well as on demand routing protocols. Extensive simulation results are provided to evaluate performance of our proposed schemes in random multihop networks. Results show significant reduction in PUs’ average interference experience and impressive performance as opportunistic routing schemes can be achieved by our schemes compared to traditional shortest path based routing schemes. Performance improvement is also reported over prominent recent schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号