首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this contribution, the capabilities of pressurized liquid extraction (PLE) using food-grade solvents, such as water and ethanol, to obtain antioxidant extracts rich on polyphenolic compounds from olive leaves are studied. Different extraction conditions were tested, and the PLE obtained extracts were characterized in vitro according to their antioxidant capacity (using the DPPH radical scavenging and the TEAC assays) and total phenols amounts. The most active extracts were obtained with hot pressurized water at 200 °C (EC(50) 18.6 μg/mL) and liquid ethanol at 150 °C (EC(50) 27.4 μg/mL), attaining at these conditions high extraction yields, around 40 and 30%, respectively. The particular phenolic composition of the obtained extracts was characterized by LC-ESI-MS. Using this method, 25 different phenolic compounds could be tentatively identified, including phenolic acids, secoiridoids, hydroxycinnamic acid derivatives, flavonols and flavones. Among them, hydroxytyrosol, oleuropein and luteolin-glucoside were the main phenolic antioxidants and were quantified on the extracts together with other minor constituents, by means of a UPLC-MS/MS method. Results showed that using water as extracting agent, the amount of phenolic compounds increased with the extraction temperature, being hydroxytyrosol the main phenolic component on the water PLE olive leaves extracts, reaching up to 8.542 mg/g dried extract. On the other hand, oleuropein was the main component on the extracts obtained with ethanol (6.156-2.819 mg/g extract). Results described in this work demonstrate the good possibilities of using PLE as a useful technique for the valorization of by-products from the olive oil industry, such as olive leaves.  相似文献   

2.
A capillary zone electrophoresis method has been carried out to determine and quantitate some compounds of the polyphenolic fraction of virgin olive oil which have never previously been determined before using capillary electrophoresis, such as elenolic acid, ligstroside aglycon, oleuropein aglycon, and (+)-pinoresinol. The compounds were identified using standards obtained by semipreparative high-performance liquid chromatography (HPLC). A detailed method optimization was performed to separate the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil, and different extraction systems were compared (C18-solid phase extraction (SPE), Diol-SPE, Sax-SPE and liquid-liquid extraction). The optimized parameters were 30 mM sodium tetraborate buffer (pH 9.3) at 25 kV with 8 s hydrodynamic injection, and the quantitation was carried out by the use of two reference compounds at two different wavelengths.  相似文献   

3.
In recent years it has been confirmed that the consumption of olive oil prevents the oxidation of biomolecules owing to its monounsaturated fatty acids (MUFA) and phenolic content. The main objective of the study was to develop an ultra‐high‐performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method for the determination of phenolic compounds in human high‐density lipoprotein (HDL) samples. At the same time, the influence of olive oil consumption on the phenolic metabolite levels was evaluated in a European population. The participants were 51 healthy men, aged 20–60. They were randomized to two consecutive intervention periods with the administration of raw olive oil with low and high polyphenolic content. The UHPLC‐MS/MS analytical method has been validated for hydroxytyrosol and homovanillic acid in terms of linearity (r2 = 0.99 and 1.00), repeatability (5.7 and 6.5%) reproducibility (6.2 and 7%), recovery (98 to 97%), limits of detection (1.7 to 1.8 ppb) and quantification (5.8 and 6.3 ppb).The levels of the studied metabolites increased significantly after high polyphenolic content virgin olive oil ingestion (p <0.05) compared with lowpolyphenolic content olive oil. Virgin olive oil consumption increases the levels of phenolic metabolites in HDL and thus provides human HDL with more efficient antioxidant protection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The solid fraction of olive mill waste water (OMWW) was separated from OMWW and then the solutes in the solid fraction of OMWW were extracted with ethanol. The detection of polyphenols in the ethanol extract showed the presence of polyphenols in the solid fraction of OMWW. Effects of solvent-to-solid ratio, extraction and agitation time on the extraction of polyphenols from the solid fraction of OMWW were examined and the maximum amount of polyphenol was extracted from the solid fraction of OMWW with a solvent-to-solid ratio of 15 at 70?min of extraction and 10?min of agitation time. Percent yields and purities of the polyphenols extracted from solid fraction of OMWW were higher than those of the polyphenols extracted from olive pomace with ethanol at 70?min of extraction and 10?min of agitation time with solvent-to-solid ratio of 15.  相似文献   

5.
Free radical scavenging activity of different polyphenolic compounds commonly present in wine has been evaluated using DPPH method. The experiments were performed with different amounts of phenols within the linear interval of response and with an excess of DPPH in all cases. In these conditions, for most of the compounds tested, the reaction was biphasic. Total stoichiometry values n confirm the implication of more than one step in the process. Flavan-3-ol compounds showed the highest values, especially procyanidins B1 (9.8) and B2 (9.1). In this family, n values coincide with the number of hydroxyl groups available. EC50 and TEC50 parameters have been calculated. EC50 values are extremely diverse, being the procyanidins B1 and B2 the most potent scavenging compounds and resveratrol the less one. TEC50 considers the rate of reaction towards the free radical. (+)-Catechin and (−)-epicatechin are the phenolic compounds that need more time to react. In contrast, caftaric and caffeic acids are the phenolic acids that react more rapidly. Antioxidant efficacy (AE) is a parameter that combines both factors. Compounds as kaempferol, with a high EC50 value, could be considered as an antioxidant with low relevance, but instead shows the highest AE value of the phenolic compounds tested, due to its fast rate of reaction, what is of great biological importance.  相似文献   

6.

Background

Olive biophenols are emerging as a valued class of natural products finding practical application in the food, pharmaceutical, beverage, cosmetic and nutraceutical industries due to their powerful biological activity which includes antioxidant and antimicrobial properties. Olive mill waste water (OMWW), a by-product in olive oil manufacturing, is rich in biophenols such as hydroxytyrosol and tyrosol. The amount of biophenols depends on the cultivar, the geographical area of cultivation, and the seasonal conditions. The goal of this study was to develop a straightforward method to assess the economic value of OMWW via quantification of hydroxytyrosol and tyrosol.

Results

The amount of hydroxytyrosol and tyrosol phenolic compounds in the OMWW from four different cultivars grown in four different regions of Sicily was analyzed using liquid–liquid and solid–liquid analytical protocols developed ad hoc. Results showed significant differences amongst the different cultivars and their geographical origin. In all samples, the concentration of hydroxytyrosol was generally from 2 to 10 times higher than that of tyrosol. In general, the liquid–liquid extraction protocol gave higher amounts of extracted biophenols. The cultivar Cerasuola had the highest amount of both hydroxytyrosol and tyrosol. The cultivar Nocellara Etnea had the lowest content of both biophenols.

Conclusions

A quick method to assess the economic value of olive mill waste water via quantification of hydroxytyrosol and tyrosol in olive phenolic enriched extracts is now available.
  相似文献   

7.
Abstract

Olive oils may provide health benefits, including the prevention of coronary heart diseases, cancers, and the modification of immune and inflammatory responses. These benefits mainly originate from the phenolic compounds found in olive oil. There has been no study on the advanced characterization of Albanian olive oils from various cultivars regarding phenolic compounds. Hence, a comprehensive characterization of phenolic compounds is carried out in Albanian monocultivar virgin olive oils from five different cultivars, including Kalinjot, Bardhi Tirana, Ulliri-i-Zi Tirana, Krips Kruja, and Bardhi Kruja for the first time. Liquid chromatography coupled to diode array detection and electrospray ?onization tandem mass spectrometry (LC-DAD-ESI-MS/MS) is employed for the determination of phenolic compounds. In total, 18 compounds were identified in all samples, including phenolic alcohols, phenolic acids, secoiridoids, flavonoids, and phenolic aldehydes. Significant quantitative differences were detected among the cultivars, with the highest concentrations detected in virgin olive oil (VOO) from cv. Ulli-i-Zi. Secoiridoids were found in abundance, in general, followed by phenolic alcohols, and in this group, 3,4-DHPEA-EDA and p-HPEA-EDA stood out as dominant compounds, especially in Kalinjot virgin olive oils. Regarding phenolic alcohols, 3,4-DHPEA-AC was determined as the main phenolic compound. Phenolic profiles were found to be significantly different among the olive oil samples of different cultivars. Principal component analyses (PCA) displayed the differentiation of samples in terms of phenolic compounds.  相似文献   

8.
We present an easy and rapid method for the analysis of phenolic compounds in extra-virgin olive oil by CZE coupled with ESI-TOF-MS. Optimum electrophoretic separation was obtained using a basic carbonate electrolyte. We thus achieved the determination of several important families (phenyl alcohols, phenyl acids, lignans, flavonoids, and secoiridoids) of the polar fraction of the olive oil. Furthermore, other "unknown" compounds were also identified. In addition to the CZE method, HPLC analyses were made, separating compounds belonging to the main families present in this polyphenolic fraction, as well as other new compounds. We compared the results obtained with both techniques and found it was possible to determine more than 45 compounds with both methods. The sensitivity, together with mass accuracy and true isotopic pattern of the TOF-MS, allowed the identification of a broad series of known and so far not described phenolic compounds present in extra-virgin olive oil.  相似文献   

9.
Quince (Cydonia oblonga Mill.) is a potential source of polyphenolic compounds related with beneficial biological processes. In this study polyphenols from quince fruit were extracted with aqueous acetone at different ratios. A polyphenol profile was identified and quantified by LC-ESI-QqQ. The antioxidant capacity (ORAC and DPPH) and anti-inflammatory effect (inhibition of COX-2 cyclooxygenase) were evaluated in vitro. The results indicated an effect of the aqueous acetone ratio on the extraction of polyphenolic compounds. The higher extraction yields of polyphenolic compounds were attained with 60–75% aqueous acetone. However, extracts obtained with 85% aqueous acetone promoted higher antioxidant and anti-inflammatory effects. Optimal scaling analysis indicated that hydroxycinnamic acids (quinic and chlorogenic), hydroxybenzoic acids (vanillic and syringic), flavonoids (quercetin and kaempferol), dihydrochalcones (neohesperidin) and flavones (acacetin) are related to the antioxidant activity of quince. While phenolic acids, flavonols (kaempferol-3-O-glucoside and rutin) and flavanols (epicatechin) generated the anti-inflammatory effect by inhibiting 52.3% of the COX-2 enzyme. Therefore, a selective extraction of phenolic mix can reduce oxidative stress or inflammatory processes. This suggests the use of quince as a natural source with significant nutraceutical potential.  相似文献   

10.
Olive oil mill wastewater (OMWW) is very rich in phenolic compounds especially the key compounds of caffeic acid (CA), hydroxytyrosol (HTY), and tyrosol (TY). Therefore, the development of new and effective analytical and industrial methods for the separation and concentration of these valuable compounds has attracted great attention in the last decades. In this study, a selective transport and separation method for CA, HTY, and TY from OMWW samples, obtained from different olive orchards, using a new bulk liquid membrane (BLM) procedure was developed. Various factors influencing the transport efficiency such as pH of the source and receiving phases, nature and volume of the organic membrane, stirring rate, and transport time were investigated and optimized. Under optimal experimental conditions, the transport efficiencies of CA, HTY, and TY from the OMWW samples of 90.1 %, 28.4 %, and 34.9 % were obtained, respectively. Relative standard deviations (RSDs, n = 7) were found to be 4.1 %, 3.8 %, and 3.0 % and the limits of detection (LODs) obtained were 0.001 mg L?1, 0.011 mg L?1, and 0.008 mg L?1, for CA, HTY, and TY, respectively.  相似文献   

11.
The biological benefits of olive oil in preventing the oxidation of low density lipoprotein (LDL) would seem to be linked to its high monounsaturated fatty acid contents, but also to its respective phenolic compounds contents. One prerequisite to assess the in vivo physiological significance of phenolic compounds is to determine their presence in human LDL following the ingestion of virgin olive oil.In this work, olive oil phenolic metabolites were identified using high-performance liquid chromatography in tandem with electrospray mass spectrometry (HPLC-ESI-MS/MS) detection, after solid phase extraction (SPE). Quantitative methods were developed in carrying out linearity, precision, sensitivity and recovery tests. The results from two methods of LDL separation were compared and shorter LDL isolation procedure showed a better recovery for antioxidants compounds in LDL. The metabolites identified in LDL were: hydroxytyrosol monoglucuronide, hydroxytyrosol monosulfate, tyrosol glucuronide, tyrosol sulfate and homovanillic acid sulfate. The fact that olive oil phenolic metabolites are able to bind LDL strengthens claims that these compounds act as in vivo antioxidants.  相似文献   

12.
The characteristic resistance to oxidation of virgin olive oil is related to its unique fatty acid composition in addition to several minor components that have antioxidant properties. Among the latter, phenols are the most important. Several factors can influence the chemical or enzymatic oxidative processes that extend or shorten the shelf-life of olive oil. Furthermore, the amount of phenolic compounds extracted during production is fundamental for the oxidative and nutritional quality of the oil. In fact, it is well known that different steps used for preparation of virgin olive oil may determine differences in the quantities of phenol. At present, various analytical methods are available to analyze the hydrophilic components, including spectrophotometric assays (traditional) and high resolution chromatographic techniques (HRGC, HPLC, HPCE). In this review we summarize these different methodologies and demonstrate that the amount of phenolic compounds in virgin olive oil as determined by both traditional and high resolution techniques can be influenced by different factors including the olive cultivar and degree of ripeness, as well as by production and extraction technologies.  相似文献   

13.
The increasing popularity of olive oil is mainly attributed to its high content of oleic acid, which may affect the plasma lipid/lipoprotein profiles, and its richness in phenolic compounds, which act as natural antioxidants and may contribute to the prevention of human disease. An overview of analytical methods for the measurement of polyphenols in olive oil is presented. In principle, the analytical procedure for the determination of individual phenolic compounds in virgin olive oil involves three basic steps: extraction from the oil sample, analytical separation, and quantification. A great number of procedures for the isolation of the polar phenolic fraction of virgin olive oil, utilizing two basic extraction techniques, LLE or SPE, have been included. The reviewed techniques are those based on spectrophotometric methods, as well as analytical separation (gas chromatography (GC), high-performance liquid chromatography (HPLC), and capillary electrophoresis (CE)). Many reports in the literature determine the total amount of phenolic compounds in olive oils by spectrophometric analysis and characterize their phenolic patterns by capillary gas chromatography (CGC) and, mainly, by reverse phase high-performance liquid chromatography (RP-HPLC); however, CE has recently been applied to the analysis of phenolic compound of olive oil and has opened up great expectations, especially because of the higher resolution, reduced sample volume, and analysis duration. CE might represent a good compromise between analysis time and satisfactory characterization for some classes of phenolic compounds of virgin olive oils.  相似文献   

14.
The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.  相似文献   

15.
Bactrocera oleae, the olive fruit fly, is one of the most important pests affecting the olive fruit, causing serious quantitative and qualitative damage to olive oil production. In this study, the changes induced by B. oleae infestation in the biosynthesis of volatile and phenolic compounds in olive (cvs. Picual, Manzanilla, and Hojiblanca) have been analyzed. Despite cultivar differences, the oils obtained from infested fruits showed a significant increase in the content of certain volatile compounds such as (E)-hex-2-enal, ethanol, ethyl acetate, and β-ocimene and a drastic decrease of the phenolic contents. The impact of those changes on the inferred quality of the oils has been studied. In parallel, the changes induced by the attack of the olive fly on the expression of some key genes in the biosynthesis of volatile and phenolic compounds, such as lipoxygenase, β-glucosidase, and polyphenol oxidase, have been analyzed. The strong induction of a new olive polyphenol oxidase gene (OePPO2) explains the reduction of phenolic content in the oils obtained from infested fruits and suggest the existence of a PPO-mediated oxidative defense system in olives.  相似文献   

16.
In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.  相似文献   

17.
《Comptes Rendus Chimie》2009,12(8):895-904
Olive oils were tested for their chemical composition in polyphenols, free fatty acids and volatile compounds as a function of the crushing systems, i.e. the stone mill and hammer crusher. The qualitative and quantitative HPLC/DAD analyses of the olive oils showed that luteolin and tyrosol were the most abundant identified phenolic compounds. The olive oil obtained by the hammer crusher had the highest concentration of phenolic compounds and ultimately the strongest antioxidant activity. Olives treated by the two crushing systems were observed by scanning electronic microscopy. Micrographs provide more evidence of the better cell cuts of olive fruits treated by hammer crushing, in contrast to stone mill where olive cell layers have been broken and damaged.  相似文献   

18.
A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.  相似文献   

19.
A 2‐D‐HPLC/CE method was developed to separate and characterize more in depth the phenolic fraction of olive oil samples. The method involves the use of semi‐preparative HPLC (C18 column 250×10 mm, 5 μm) as a first dimension of separation to isolate phenolic fractions from commercial extra‐virgin olive oils and CE coupled to TOF‐MS (CE‐TOF‐MS) as a second dimension, to analyze the composition of the isolated fractions. Using this method, a large number of compounds were tentatively identified, some of them by first time, based on the information concerning high mass accuracy and the isotopic pattern provided by TOF‐MS analyzer together with the chemical knowledge and the behavior of the compounds in HPLC and CE. From these results it can be concluded that 2‐D‐HPLC‐CE‐MS provides enough resolving power to separate hundreds of compounds from highly complex samples, such as olive oil. Furthermore, in this paper, the isolated phenolic fractions have been used for two specific applications: quantification of some components of extra‐virgin olive oil samples in terms of pure fractions, and in vitro studies of its anti‐carcinogenic capacity.  相似文献   

20.
A 23-full factorial design and response surface methodology were deployed to assess some basic factors (time, % ethanol and pH) affecting profoundly the extractability of polyphenolic phytochemicals from grape (Vitis vinifera) stems. In an effort to obtain a thorough insight into the applicability of the models established, stem extracts from three different varieties were tested, by determining several indices of the polyphenolic composition, such as total polyphenol (TP), total flavanol (TFl), total flavone (TFn) and proanthocyanidin (PC) concentration. It was shown that the models generated can adequately predict the recovery levels for each polyphenol group, but the optimal conditions predicted for TP, TFl, TFn and PC recovery varied significantly. Notable differences were also seen among the different varieties. Correlation of the polyphenol indices with the antiradical activity and reducing power of the extracts indicated that the PC fraction might exert strong effects, while the influence of other groups was not apparent. Examination of the optimally obtained extracts using liquid chromatography-mass spectrometry revealed that the most prominent compounds were caftaric acid, flavanols and derivatives thereof, as well as dehydroflavonols and flavonols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号