首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede’s dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.  相似文献   

2.
It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver. It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel.  相似文献   

3.
Quantum degenerate code may improve the hashing bound of quantum capacity. We propose a family of quantum degenerate codes derived from two-colorable graphs. The coherent information of the codes is analytically obtained as a function of the channel noise for the depolarizing channel. We find a new code which has a higher noise threshold than that of the repetition code.  相似文献   

4.
We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with k senders and m receivers. We point out natural generalizations to the case of two-way classical communication capacity.  相似文献   

5.
The relay nodes with linear relaying transmit linear combination of their past received signals. The capacity of the multiple-hop Gaussian relay channel with linear relaying is derived, assuming that each node in the channel only communicates with its nearest neighbor nodes. The capacity is formulated as an optimization problem over the relaying matrices and the covariance matrix of the signals transmitted from the source. It is proved that the solution to this optimization problem is equivalent to a “single-letter” optimization problem when some certain conditions are satisfied. We also show that the solution to the “single-letter” optimization problem has the same form as the expression of the rate achieved by time-sharing amplify-and-forward (TSAF). In order to solve this equivalent problem, we give an iterative algorithm. Simulation results show that the achievable rate with TSAF is close to the capacity, if channel gain of one certain hop is smaller than that of all the other hops relatively.  相似文献   

6.
Hua Lu 《Optics Communications》2011,284(8):2254-2256
We present an asymptotic security proof of deterministic quantum key distribution (DQKD) with a two-way quantum channel. The security proof of DQKD with a two-way quantum channel is different from that of BB84, because Eve can attack the travel qubits twice, both in line Bob to Alice and in line Alice to Bob. With the no-signaling principle and the property of mutual information, we obtain an upper bound of the final key generation of entanglement-based DQKD and hence single-photon four-state DQKD. Our results can be applied to the protocol of QKD with two-step quantum channels.  相似文献   

7.
We prove that a broad array of capacities of a quantum channel are continuous. That is, two channels that are close with respect to the diamond norm have correspondingly similar communication capabilities. We first show that the classical capacity, quantum capacity, and private classical capacity are continuous, with the variation on arguments e{\varepsilon} apart bounded by a simple function of e{\varepsilon} and the channel’s output dimension. Our main tool is an upper bound of the variation of output entropies of many copies of two nearby channels given the same initial state; the bound is linear in the number of copies. Our second proof is concerned with the quantum capacities in the presence of free backward or two-way public classical communication. These capacities are proved continuous on the interior of the set of non-zero capacity channels by considering mutual simulation between similar channels.  相似文献   

8.
Robust detection is employed in this work to cope with uncertainties on the channel gains and the noise power levels in a cognitive radio system based on linear cooperative spectrum sensing. The minimum number of samples required to achieve given false-alarm and missed-detection probabilities is derived as a function of the system parameter uncertainty levels and the nominal SNRs. A lower bound to the received symbol energy required to achieve reliable system operation is derived. This lower bound extends the concept of SNR wall to the case of a cooperative CR system with multiple secondary users. Then, a symmetric CR system scenario is investigated analytically and by numerical simulations. Simple asymptotic results are obtained in this case to relate the minimum number of samples required and the system parameters.  相似文献   

9.
We study the statistics of optical data transmission in a noisy nonlinear fiber channel with a weak dispersion management and zero average dispersion. Applying analytical expressions for the output probability density functions both for a nonlinear channel and for a linear channel with additive and multiplicative noise we calculate in a closed form a lower bound estimate on the Shannon capacity for an arbitrary signal-to-noise ratio.  相似文献   

10.
We describe two quantum channels that individually cannot send any classical information without some chance of decoding error. But together a single use of each channel can send quantum information perfectly reliably. This proves that the zero-error classical capacity exhibits superactivation, the extreme form of the superadditivity phenomenon in which entangled inputs allow communication over zero-capacity channels. But our result is stronger still, as it even allows zero-error quantum communication when the two channels are combined. Thus our result shows a new remarkable way in which entanglement across two systems can be used to resist noise, in this case perfectly. We also show a new form of superactivation by entanglement shared between sender and receiver.  相似文献   

11.
In a unified viewpoint in quantum channel estimation, we compare the Cramér-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramér-Rao bound in the phase estimation case while both bounds coincide when the minimum mean square error decreases with the order O(\frac1n){O(\frac{1}{n})} . We also derive a sufficient condition so that the minimum mean square error decreases with the order O(\frac1n){O(\frac{1}{n})} .  相似文献   

12.
On the Validations of the Asymptotic Matching Conjectures   总被引:1,自引:0,他引:1  
In this paper we review the asymptotic matching conjectures for r-regular bipartite graphs, and their connections in estimating the monomer-dimer entropies in d-dimensional integer lattice and Bethe lattices. We prove new rigorous upper and lower bounds for the monomer-dimer entropies, which support these conjectures. We describe a general construction of infinite families of r-regular tori graphs and give algorithms for computing the monomer-dimer entropy of density p, for any p∈[0,1], for these graphs. Finally we use tori graphs to test the asymptotic matching conjectures for certain infinite r-regular bipartite graphs.  相似文献   

13.
江月松  王帅会  欧军  唐华 《物理学报》2013,62(21):214201-214201
涡旋波束在大气湍流中的传输有非常重要的理论研究和实际应用意义. 本文基于利托夫近似和广义惠更斯-菲涅耳原理, 推导出拉盖尔-高斯(LG)光束在非Kolmogorov湍流中斜程传输时的螺旋谱, 并进一步推导出系统的容量. 对基于LG光束的通信系统容量进行了数值计算, 并对指数参数、光束波长、天顶角、湍流内尺度、外尺度、结构常数对系统容量的影响进行了分析比较. 本文的结论能够为LG光束在非Kolmogorov湍流中的通信提供一定的参考价值. 关键词: 拉盖尔-高斯光束 非Kolmogorov湍流 平均容量  相似文献   

14.
This paper studies the difficulty of discriminating between an arbitrary quantum channel and a “replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein’s lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel \({\mathcal{N}}\) as the optimal Type II error exponent when discriminating between a large number of independent instances of \({\mathcal{N}}\) and an arbitrary “worst-case” replacer channel chosen from the set of all replacer channels.  相似文献   

15.
This paper deals with the specific construction of binary low-density parity-check (LDPC) codes. We derive lower bounds on the error exponents for these codes transmitted over the memoryless binary symmetric channel (BSC) for both the well-known maximum-likelihood (ML) and proposed low-complexity decoding algorithms. We prove the existence of such LDPC codes that the probability of erroneous decoding decreases exponentially with the growth of the code length while keeping coding rates below the corresponding channel capacity. We also show that an obtained error exponent lower bound under ML decoding almost coincide with the error exponents of good linear codes.  相似文献   

16.
We introduce a statistical mechanics formalism for the study of constrained graph evolution as a Markovian stochastic process, in analogy with that available for spin systems, deriving its basic properties and highlighting the role of the ‘mobility’ (the number of allowed moves for any given graph). As an application of the general theory we analyze the properties of degree-preserving Markov chains based on elementary edge switchings. We give an exact yet simple formula for the mobility in terms of the graph’s adjacency matrix and its spectrum. This formula allows us to define acceptance probabilities for edge switchings, such that the Markov chains become controlled Glauber-type detailed balance processes, designed to evolve to any required invariant measure (representing the asymptotic frequencies with which the allowed graphs are visited during the process). As a corollary we also derive a condition in terms of simple degree statistics, sufficient to guarantee that, in the limit where the number of nodes diverges, even for state-independent acceptance probabilities of proposed moves the invariant measure of the process will be uniform. We test our theory on synthetic graphs and on realistic larger graphs as studied in cellular biology, showing explicitly that, for instances where the simple edge swap dynamics fails to converge to the uniform measure, a suitably modified Markov chain instead generates the correct phase space sampling.  相似文献   

17.
The value of the central density is of key importance for annihilation processes. For the ground state we discuss its determination from the moments of the ground state density. We first review the way of reaching the moments from the spectrum. In particular we show how to get the lowest moments in D = 3, namely 〈r−2〉 and 〈r−1〉 from the series expansion of the Laplace transform of the density. We then recall a method to obtain the central density based on the Stieltjes moment problem. If the number of known moments is finite, this technique yields a lower bound. We investigate the possibilities to estimate the accuracy of the bound and the corresponding asymptotic value. An application to the muonic 208Pb atom is presented.  相似文献   

18.
We investigate consensus formation and the asymptotic consensus times in stylized individual- or agent-based models, in which global agreement is achieved through pairwise negotiations with or without a bias. Considering a class of individual-based models on finite complete graphs, we introduce a coarse-graining approach (lumping microscopic variables into macrostates) to analyze the ordering dynamics in an associated random-walk framework. Within this framework, yielding a linear system, we derive general equations for the expected consensus time and the expected time spent in each macro-state. Further, we present the asymptotic solutions of the 2-word naming game and separately discuss its behavior under the influence of an external field and with the introduction of committed agents.  相似文献   

19.
We study the dynamics of a quantum particle governed by a linear Schrödinger equation with a scaled Gaussian potential. In the weak coupling limit the average dynamics of such a particle can be described by a linear Boltzmann equation. In this work we prove a bound for the rate at which the average dynamics of the quantum particle approach linear Boltzmann equation dynamics. For the so called simple diagrams, we use a stationary phase approach to establish an asymptotic expansion that provides the bound. Our stationary phase approach also provides a simple, formal method for computing the Boltzmann limit. Our work uses and extends results developed by L. Erdös and H.T. Yau.  相似文献   

20.
Motivated by the recent discovery of a quantum Chernoff theorem for asymptotic state discrimination, we investigate the distinguishability of two bipartite mixed states under the constraint of local operations and classical communication (LOCC), in the limit of many copies. While for two pure states a result of Walgate et al. shows that LOCC is just as powerful as global measurements, data hiding states (DiVincenzo et al.) show that locality can impose severe restrictions on the distinguishability of even orthogonal states. Here we determine the optimal error probability and measurement to discriminate many copies of particular data hiding states (extremal d × d Werner states) by a linear programming approach. Surprisingly, the single-copy optimal measurement remains optimal for n copies, in the sense that the best strategy is measuring each copy separately, followed by a simple classical decision rule. We also put a lower bound on the bias with which states can be distinguished by separable operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号