首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study, we develop a liposomal fusion model system with specific recognition using lipidated derivatives of a set of four de novo designed heterodimeric coiled coil (CC) peptide pairs. Content mixing was only obtained between liposomes functionalized with complementary peptides, demonstrating both fusogenic activity of CC peptides and the specificity of this model system. The diverse peptide fusogens revealed important relationships between the fusogenic efficacy and the peptide characteristics. The fusion efficiency increased from 20% to 70% as affinity between complementary peptides decreased, (from KF ≈ 108 to 104 M−1), and fusion efficiency also increased due to more pronounced asymmetric role-playing of membrane interacting ‘K’ peptides and homodimer-forming ‘E’ peptides. Furthermore, a new and highly fusogenic CC pair (E3/P1K) was discovered, providing an orthogonal peptide triad with the fusogenic CC pairs P2E/P2K and P3E/P3K. This E3/P1k pair was revealed, via molecular dynamics simulations, to have a shifted heptad repeat that can accommodate mismatched asparagine residues. These results will have broad implications not only for the fundamental understanding of CC design and how asparagine residues can be accommodated within the hydrophobic core, but also for drug delivery systems by revealing the necessary interplay of efficient peptide fusogens and enabling the targeted delivery of different carrier vesicles at various peptide-functionalized locations.

We developed a liposomal fusion model system with specific recognition using a set of heterodimeric coiled coil peptide pairs. This study unravels important structure–fusogenic efficacy relationships of peptide fusogens.  相似文献   

2.
The autodegradation-resistant mutant thermolysins (TLNs), L155A (Leu155 to Ala) and L155S (Leu155 to Ser), were previously constructed by site-directed mutagenesis to enhance thermostability. These mutations suppressed autodegradation at position 154–155, resulting in increased thermostability. However, a new autodegradation site became apparent in these mutant TLNs, at position 155–156. In this study, further stabilization of the mutant TLNs to suppress this new autodegradation was attempted by the substitution of Ile156 to Asp and Val (L155A-I156N, L155A-I156V, L155S-I156N, and L155S-I156V). SDS–PAGE analysis showed that the autodegradation at 155–156 of all double-mutant TLNs was suppressed. Thermostability at 80 °C was enhanced in all double-mutant TLNs (half-life at 80 °C: WT, 18.3 min; L155A, 25.0 min; L155S, 24.0 min; L155A-I156N, 60.8 min; L155A-I156V, 62.4 min; L155S-I156N, 93.3 min; and L155S-I156V, 40.0 min), and k cat/K m values were: WT, 220; L155A, 240; L155S, 123; L155A-I156N, 62; L155A-I156V, 760; L155S-I156N, 240; and L155S-I156V, 520 min−1 mM−1.  相似文献   

3.
De novo design of alpha-helical peptides that self-assemble to form helical coiled coils is a powerful tool for studying molecular recognition between peptides/proteins and determining the fundamental forces involved in their folding and structure. These amphipathic helices assemble in aqueous solution to generate the final coiled coil motif, with the hydrophobic residues in the interior and the polar/hydrophilic groups on the exterior. Considerable effort has been devoted to investigate the forces that determine the overall stability and final three-dimensional structure of the coiled coils. One of the major challenges in coiled coil design is the achievement of specificity in terms of the oligomeric state, with respect to number (two, three, four, or higher), nature (homomers vs heteromers), and strand orientation (parallel vs antiparallel). As seen in nature, metal ions play an important role in this self-organization process, and the overall structure of metalloproteins is primarily the result of two driving forces: the metal coordination preference and the fold of the polypeptide backbone. Previous work in our group has shown that metal ions such as As(III) and Hg(II) can be used to enforce different aggregation states in the Cys derivatives of the designed homotrimeric coiled-coil TRI family [Ac-G(LKALEEK)4G-CONH2]. We are now interested in studying the interplay between the metal ion and peptide preferences in controlling the specificity and relative orientation of the alpha-helices in coiled coils. For this objective, two derivatives of the TRI family, TRi L2WL9C and TRi L2WL23C, have been synthesized. Along with those two peptides, two derivatives of Coil-Ser, CSL9C and CSL19C (CS = Ac-EWEALEKKLAALESKLQALEKKLEALEHG-CONH2), a similar de novo designed three-stranded coiled coil that has the potential to form antiparallel coiled coils, have also been used. Circular dichroism, UV-vis, and 199Hg and 113Cd NMR spectroscopy results reveal that the addition of Hg(II) and Cd(II) to the different mixtures of these peptides forms preferentially homotrimeric coiled coils, over a statistical population of heterotrimeric parallel and antiparallel coiled coils.  相似文献   

4.
Two new tris(pyrazolyl)methane (Tpm) ligands were obtained by exploiting a C–F activation strategy. The novel monotopic ligand, H2NPh(CF3)(CPz3), was utilized to generate a Mn-carbonyl complex. These compounds were characterized by NMR, IR, elemental analysis, X-ray crystallography, and DFT in the case of the Mn-compound. Of the computational levels of theory tested, we found that the TPSSh, B3PW91, and B3LYP functionals with the 6-311++G(d,p) basis set gave results closest to experimental data. When compared to a previously reported Mn-carbonyl compound, [TpmMn(CO)3][PF6], our species, [H2NPh(CF3)(CPz3)Mn(CO)3][PF6], exhibited similar spectroscopic properties [e.g., ν(C≡O) stretching]. This indicates that the presence of the H2NPh(CF3) group on the backbone of the Tpm ligand imposes little to no electronic influence on the metal center relative to the parent Tpm complex. Our novel ligand also provides a new spectroscopic handle to study Tpm derivatives, i.e., fluorine atoms for 19F-NMR spectroscopy.  相似文献   

5.
The regioselective synthesis of novel functionalized condensed organochalcogen compounds by chalcogenocyclofunctionalization reactions based on chalcogen halides and the natural products thymol and carvacrol has been developed. The reactions of selenium dibromide with allyl thymol and allyl carvacrol proceeded in methylene chloride at room temperature in the presence of NaHCO3 affording bis[(7-isopropyl-4-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] and bis[(4-isopropyl-7-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] selenides in 90–92% yield. Similar sulfides were obtained in 70–72% yields by the reaction of sulfur dichloride in chloroform under reflux. Trihalotellanes containing the same organic moieties were synthesized from allyl thymol, allyl carvacrol and tellurium tetrachloride or tetrabromide in quantitative yields. Corresponding functionalized ditellurides were prepared in 91–92% yields by the reduction of the trichlorotellanes with sodium metabisulfite in two-phase solvent system. The comparison of reactivity of sulfur, selenium and tellurium halides in chalcogenocyclofunctionalization and distinguishing features of each reaction were discussed.  相似文献   

6.
The rational design of linear peptides that assemble controllably and predictably in water is challenging. Short sequences must encode unique target structures and avoid alternative states. However, the non-covalent forces that stabilize and discriminate between states are weak. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentameric to nonameric barrels are accessed by varying the residue at one of the h sites. In peptides with four L/I–K–E–I–A–x–Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.

Systematic de novo design of peptides that form α-helical barrels with functionalisable central channels with a range of internal diameters.  相似文献   

7.
Necroptosis is a type of programmed cell death executed through the plasma membrane disruption by mixed lineage kinase domain-like protein (MLKL). Previous studies have revealed that an N-terminal four-helix bundle domain (NBD) of MLKL is the executioner domain for the membrane permeabilization, which is auto-inhibited by the first brace helix (H6). After necroptosis initiation, this inhibitory brace helix detaches and the NBD can integrate into the membrane, and hence leads to necroptotic cell death. However, how the NBD is released and induces membrane rupture is poorly understood. Here, we reconstituted MLKL2–154 into membrane mimetic bicelles and observed the structure disruption and membrane release of the first brace helix that is regulated by negatively charged phospholipids in a dose-dependent manner. Using molecular dynamics simulation we found that the brace region in an isolated, auto-inhibited MLKL2–154 becomes intrinsically disordered in solution after 7 ns dynamic motion. Further investigations demonstrated that a cluster of arginines in the C-terminus of MLKL2–154 is important for the molecular conformational switch. Functional mutagenesis showed that mutating these arginines to glutamates hindered the membrane disruption of full-length MLKL and thus inhibited the necroptotic cell death. These findings suggest that the brace helix also plays an active role in MLKL regulation, rather than an auto-inhibitory domain.  相似文献   

8.
We report the synthesis of Ln3+ nitrate [Ln(Tpm)(NO3)3] ⋅ MeCN (Ln=Yb ( 1Yb ), Eu ( 1Eu )) and chloride [Yb(Tpm)Cl3] ⋅ 2MeCN ( 2Yb ), [Eu(Tpm)Cl2(μ-Cl)]2 ( 2Eu ) complexes coordinated by neutral tripodal tris(3,5-dimethylpyrazolyl)methane (Tpm). The crystal structures of 1Ln and 2Ln were established by single crystal X-ray diffraction, while for 1Yb high resolution experiment was performed. Nitrate complexes 1Ln are isomorphous and both adopt mononuclear structure. Chloride 2Yb is monomeric, while Eu3+ analogue 2Eu adopts a binuclear structure due to two μ2-bridging chloride ligands. The typical lanthanide luminescence was observed for europium complexes ( 1Eu and 2Eu ) as well as for terbium and dysprosium analogues ([Ln(Tpm)(NO3)3] ⋅ MeCN, Ln=Tb ( 1Tb ), Dy ( 1Dy ); [Ln(Tpm)Cl3] ⋅ 2MeCN, Ln=Tb ( 2Tb ), Dy ( 2Dy )).  相似文献   

9.
In this work, we evaluated the conformational effect promoted by the isosteric exchange of sulfur by selenium in the heteroaromatic ring of new N-acylhydrazone (NAH) derivatives (3–8, 13, 14), analogues of the cardioactive compounds LASSBio-294 (1) and LASSBio-785 (2). NMR spectra analysis demonstrated a chemical shift variation of the iminic Csp2 of NAH S/Se-isosters, suggesting a stronger intramolecular chalcogen interaction for Se-derivatives. To investigate the pharmacological profile of these compounds at the adenosine A2A receptor (A2AR), we performed a previously validated functional binding assay. As expected for bioisosteres, the isosteric-S/Se replacement affected neither the affinity nor the intrinsic efficacy of our NAH derivatives (1–8). However, the N-methylated compounds (2, 6–8) presented a weak partial agonist profile at A2AR, contrary to the non-methylated counterparts (1, 3–5), which appeared as weak inverse agonists. Additionally, retroisosterism between aromatic rings of NAH on S/Se-isosters mimicked the effect of the N-methylation on intrinsic efficacy at A2AR, while meta-substitution in the phenyl ring of the acyl moiety did not. This study showed that the conformational effect of NAH-N-methylation and aromatic rings retroisosterism changed the intrinsic efficacy on A2AR, indicating the S/Se-chalcogen effect to drive the conformational behavior of this series of NAH.  相似文献   

10.
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.  相似文献   

11.
The macroscopic and microscopic acid-base chemistry of a series of sulfhydryl and ammonium-containing amino acids HS–R–NH3 [R=–CH2CH(COOH)–, cysteine (CYS); R=–C(CH3)2CH(COOH)–, penicillamine (PEN); R=–CH(COOH)CH2CH2CONHCH(–CH2)CONHCH2COOH, glutathione (GSH)] was characterized in water and its binary mixtures with acetonitrile (16.3, 34.2, and 53.9 mass % acetonitrile). Macroscopic acid dissociation constants were obtained by potentiometric titration using the glass-calomel electrode pair. Microscopic acid dissociation constants were calculated from ultraviolet absorption measurements at ca. 232 nm where the deprotonated sulfhydryl group absorbs. The macroscopic constants decrease uniformly as the solvent becomes enriched in acetonitrile. The microscopic constants, which characterize the relative concentrations of the two monoprotonated tautomers of the molecules (I and II) reveal that as the solvent becomes enriched in acetonitrile, the fraction of molecules existing as highly charged tautomer I decreases for CYS (0.68–0.40), PEN (0.85–0.34), and GSH (0.61–0.30). These results are related to the decreasing concentration of water as the solvent becomes enriched in acetonitrile.  相似文献   

12.
The synthesis of new Schrock–Osborn Rh(i) pre-catalysts with ortho-substituted DPEphos ligands, [Rh(DPEphos-R)(NBD)][BArF4] [R = Me, OMe, iPr; ArF = 3,5-(CF3)2C6H3], is described. Along with the previously reported R = H variant, variable temperature 1H NMR spectroscopic and single-crystal X-ray diffraction studies show that these all have axial (C–H)⋯Rh anagostic interactions relative to the d8 pseudo square planar metal centres, that also result in corresponding downfield chemical shifts. Analysis by NBO, QTAIM and NCI methods shows these to be only very weak C–H⋯Rh bonding interactions, the magnitudes of which do not correlate with the observed chemical shifts. Instead, as informed by Scherer''s approach, it is the topological positioning of the C–H bond with regard to the metal centre that is important. For [Rh(DPEphos–iPr)(NBD)][BArF4] addition of H2 results in a Rh(iii) iPr–C–H activated product, [Rh(κ3,σ-P,O,P-DPEphos-iPr′)(H)][BArF4]. This undergoes H/D exchange with D2 at the iPr groups, reacts with CO or NBD to return Rh(i) products, and reaction with H3B·NMe3/tert-butylethene results in a dehydrogenative borylation to form a complex that shows both a non-classical B–H⋯Rh 3c-2e agostic bond and a C–H⋯Rh anagostic interaction at the same metal centre.

Rh(i) complexes of ortho-substituted DPEphos-R (R = H, Me, OMe, iPr) ligands show anagostic interactions; for R =iPr C–H activation/dehydrogenative borylation forms a product exhibiting both B–H/Rh 3c-2e agostic and C–H/Rh anagostic motifs.  相似文献   

13.
The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of “silicon-on-insulator” (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including Al2O3 and HfO2 in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO2 was shown. Significant differences were found in the elastic stresses of the silicon layers for very thick (>200 nm) Al2O3 layers. In the UV spectra of SOI layers of a silicon substrate with HfO2, shoulders in the Raman spectrum were observed at 480–490 cm−1 of single-phonon scattering. The h-k-SOI-NW chip created in this way has been used for the detection of DNA-oligonucleotide sequences (oDNA), that became a synthetic analog of circular RNA–circ-SHKBP1 associated with the development of glioma at a concentration of 1.1 × 10−16 M. The possibility of using such h-k-SOI NW chips for the detection of circ-SHKBP1 in blood plasma of patients diagnosed with neoplasm of uncertain nature of the brain and central nervous system was shown.  相似文献   

14.
Yuri Zimenkov  Liang Guo 《Tetrahedron》2004,60(34):7237-7246
We describe a model for the design of synthetic α-helical peptides that are competent for self-assembly into structurally defined supramolecular fibrils on the basis of architectural features that have been programmed into the peptide sequence. In order to test the validity of this experimental model, we have synthesized an oligopeptide YZ1 that was designed to conform to this model and to self-assemble into an α-helical fibril in which the structural sub-units that comprise the fibril corresponded to coiled coil dimers. Peptide YZ1 was prepared via conventional solid-phase peptide synthesis and was composed of 42 amino acid residues such that the sequence defined six distinct heptad repeats of a coiled coil structure. The sequence of YZ1 was designed to adopt an α-helical conformation in which the helical protomers self-associate in a parallel orientation with a staggered orientation between adjacent peptides that corresponded to an axial displacement of three heptads. The self-assembly of peptide YZ1 was examined at varying levels of structural hierarchy for compliance of the observed structures with the experimental model. Circular dichroism spectroscopy provided evidence for an α-helical coiled coil structure for YZ1 in aqueous solution, which could be reversibly denatured through thermal methods. TEM measurements indicated the formation of long aspect-ratio fibers of uniform diameter from aqueous solutions of YZ1, however the dimensions of the fibers suggested that lateral association occurred between the fibrils corresponding to the 2-stranded helical bundles. The α-helical coiled coil structure was confirmed in the solid-state for fibers derived from self-assembly of YZ1 by a combination of wide-angle X-ray diffraction and 13C CP/MAS NMR spectroscopy. SANS and synchrotron SAXS measurements on dilute aqueous solutions of YZ1 provided a fibril diameter that corresponded to the lateral dimensions estimated for a dimeric coiled coil assembly on the basis of structural determinations of model peptides.  相似文献   

15.
The gauche conformation of the 1,2-difluoroethane motif is known to involve stabilising hyperconjugative interactions between donor (bonding, σC–H) and acceptor (antibonding, σ*C–F) orbitals. This model rationalises the generic conformational preference of F–Cβ–Cα–X systems (φFCCX ≈ 60°), where X is an electron deficient substituent containing a Period 2 atom. Little is known about the corresponding Period 3 systems, such as sulfur and phosphorus, where multiple oxidation states are possible. Conformational analyses of β-fluorosulfides, -sulfoxides and -sulfones are disclosed here, thus extending the scope of the fluorine gauche effect to the 3rd Period (F–C–C–S(O)n; φFCCS ≈ 60°). Synergy between experiment and computation has revealed that the gauche effect is only pronounced in structures bearing an electropositive vicinal sulfur atom (S+–O, SO2).  相似文献   

16.
A series of five ruthenium complexes containing triphenyl phosphine groups known to enhance both cellular penetration and photoinduced ligand exchange, cis-[Ru(bpy)2(P(p-R-Ph)3)(CH3CN)]2+, where bpy = 2,2′-bipyridine and P(p-R-Ph)3 represent para-substituted triphenylphosphine ligands with R = –OCH3 (1), –CH3 (2) –H (3), –F (4), and –CF3 (5), were synthesized and characterized. The photolysis of 1–5 in water with visible light (λirr ≥ 395 nm) results in the substitution of the coordinated acetonitrile with a solvent molecule, generating the corresponding aqua complex as the single photoproduct. A 3-fold variation in quantum yield was measured with 400 nm irradiation, Φ400, where 1 is the most efficient with a Φ400 = 0.076(2), and 5 the least photoactive complex, with Φ400 = 0.026(2). This trend is unexpected based on the red-shifted metal-to-ligand charge transfer (MLCT) absorption of 1 as compared to that of 5, but can be correlated to the substituent Hammett para parameters and pKa values of the ancillary phosphine ligands. Complexes 1–5 are not toxic towards the triple negative breast cancer cell line MDA-MB-231 in the dark, but 3 and 5 are >4.2 and >19-fold more cytotoxic upon irradiation with blue light, respectively. A number of experiments point to apoptosis, and not to necrosis or necroptosis, as the mechanism of cell death by 5 upon irradiation. These findings provide a foundation for understanding the role of phosphine ligands on photoinduced ligand substitution and show the enhancement afforded by –CF3 groups on photochemotherapy, which will aid the future design of photocages for photochemotherapeutic drug delivery.

Ru(ii) complexes exhibit photoinduced exchange of coordinated CH3CN and photocytotoxicity against breast cancer cells highly dependent on the substituents of the ancillary triphenylphospine ligand.  相似文献   

17.
A series of peptides of general primary structure (VSSLESK)n (n = 2, 3, 4, 5 and 6) were designed and synthesized by fluorenylmethyloxycarbonyl solid-phase synthesis using a convergent approach. Peptides containing 21, 28, 35 and 42 residues were modified with α-methoxy poly(ethylene glycol) (mPEG; mol. wt. 2000) by reaction of mPEG–succinimidyl carbonate with the α-amino group of the resin-attached protected peptides. The conformation and thermal stability of the peptides and of their AB block copolymers (A is the mPEG block, B the (VSSLESK)n block) in aqueous medium were investigated by circular dichroism, size-exclusion chromatography and by analytical ultracentrifugation. The helicity of peptides increased with increasing length in a cooperative manner. The peptides and mPEG–peptides with 35 and 42 amino acid residues (block copolymers) adopted a two-stranded α-helical coiled-coil conformation in aqueous solution. The presence of the polymer chain in the diblock hybrid copolymers had no disturbing effect with respect to the stability of the α-helical peptide part in these constructs. Moreover, the thermal stability of mPEG-modified 42-peptide was substantially higher than that of the native 42-peptide. Analytical ultracentrifugation data revealed that in phosphate-buffered saline solution (25–200 μM ) the block copolymer mPEG-block-(VSSLESK)6 ( PEG42 ) associated into stable intermolecular coiled-coil dimers.

Thermal melting profiles of peptides and mPEG–peptides at concentration 0.4 g · L−1 in PBS. Molar ellipticity at 222 nm versus temperature. Heating rate 0.5 °C · min−1.  相似文献   


18.
As an alternative to Darwinian evolution relying on catalytic promiscuity, a protein may acquire auxiliary function upon metal binding, thus providing it with a novel catalytic machinery. Here we show that addition of cupric ions to a 6-phosphogluconolactonase 6-PGLac bearing a putative metal binding site leads to the emergence of peroxidase activity (kcat 7.8 × 10–2 s–1, KM 1.1 × 10–5 M). Both X-ray crystallographic and EPR data of the copper-loaded enzyme Cu·6-PGLac reveal a bis-histidine coordination site, located within a shallow binding pocket capable of accommodating the o-dianisidine substrate.  相似文献   

19.
Polyphenols, widely distributed in the genus Melastoma plants, possess extensive cellular protective effects such as anti-inflammatory, anti-tyrosinase, and anti-obesity, which makes it a potential anti-inflammatory drug or enzyme inhibitor. Therefore, the aim of this study is to screen for the anti-inflammatory and enzyme inhibitory activities of compounds from title plant. Using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semipreparative HPLC, the extract of Melastoma normale roots was separated. Four new ellagitannins, Whiskey tannin C (1), 1-O-(4-methoxygalloyl)-6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (2), 1-O-galloyl-6-O-(3-methoxygalloyl)-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (3), and 1-O-galloyl-6-O-vanilloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (4), along with eight known polyphenols were firstly obtained from this plant. The structures of all isolates were elucidated by HRMS, NMR, and CD analyses. Using lipopolysaccharide (LPS)-stimulated RAW2 64.7 cells, we investigated the anti-inflammatory activities of compounds 1–4, unfortunately, none of them exhibit inhibit nitric oxide (NO) production, their IC50 values are all > 50 μM. Anti-tyrosinase activity assays was done by tyrosinase inhibition activity screening model. Compound 1 showed weak tyrosinase inhibitory activity with IC50 values of 426.02 ± 11.31 μM. Compounds 2–4 displayed moderate tyrosinase inhibitory activities with IC50 values in the range of 124.74 ± 3.12–241.41 ± 6.23 μM. The structure–activity relationships indicate that hydroxylation at C-3′, C-4′, and C-3 in the flavones were key to their anti-tyrosinase activities. The successful isolation and structure identification of ellagitannin provide materials for the screening of anti-inflammatory drugs and enzyme inhibitors, and also contribute to the development and utilization of M. normale.  相似文献   

20.
A recent phenomenal study discovered that the extension domain of secreted amyloid-β precursor protein (sAPP) can bind to the intrinsically disordered sushi 1 domain of the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a) and modulate its synaptic transmission. The work provided an important structural foundation for the modulation of GABABR1a; however, the detailed molecular interaction mechanism, crucial for future drug design, remains elusive. Here, we further investigated the dynamical interactions between sAPP peptides and the natively unstructured sushi 1 domain using all-atom molecular dynamics simulations, for both the 17-residue sAPP peptide (APP 17-mer) and its minimally active 9 residue segment (APP 9-mer). We then explored mutations of the APP 9-mer with rigorous free energy perturbation (FEP) calculations. Our in silico mutagenesis studies revealed key residues (D4, W6, and W7) responsible for the binding with the sushi 1 domain. More importantly, one double mutation based on different vertebrate APP sequences from evolution exhibited a stronger binding (ΔΔG = −1.91 ± 0.66 kcal mol−1), indicating a potentially enhanced GABABR1a modulator. These large-scale simulations may provide new insights into the binding mechanism between sAPP and the sushi 1 domain, which could open new avenues in the development of future GABABR1a-specific therapeutics.

A recent phenomenal study discovered that the extension domain of secreted amyloid-β precursor protein (sAPP) can bind to the intrinsically disordered sushi 1 domain of the γ-aminobutyric acid type B receptor subunit 1a (GABABR1a) and modulate its synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号