共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper researches the fixed-time leader-following consensus problem for nonlinear multi-agent systems (MASs) affected by unknown disturbances under the jointly connected graph. In order to achieve control goal, this paper designs a fixed-time consensus protocol, which can offset the unknown disturbances and the nonlinear item under the jointly connected graph, simultaneously. In this paper, the states of multiple followers can converge to the state of the leader within a fixed time regardless of the initial conditions rather than just converging to a small neighborhood near the leader state. Finally, a simulation example is given to illustrate the theoretical result. 相似文献
2.
This paper studies the consensus fault-tolerant control problem of a class of second-order leader–follower multi-agent systems with unknown disturbance and actuator faults, and proposes an integral non-singular terminal sliding mode control algorithm based on a finite-time observer. First, a finite-time disturbance observer was designed based on a combination of high-order sliding mode and dual layers adaptive rules to realize fast estimation and compensation of disturbance and faults. Then, a sliding surface with additional integral links was designed based on the conventional sliding surface, and an integral non-singular terminal sliding mode controller is proposed to realize the robust consensus in finite time and accurately diminish the chattering phenomena. Finally, a numerical example and simulation verify the effectiveness. 相似文献
3.
This paper examines the adaptive control of high-order nonlinear systems with strict-feedback form. An adaptive fixed-time control scheme is designed for nonlinear systems with unknown uncertainties. In the design process of a backstepping controller, the Lyapunov function, an effective controller, and adaptive law are constructed. Combined with the fixed-time Lyapunov stability criterion, it is proved that the proposed control scheme can ensure the stability of the error system in finite time, and the convergence time is independent of the initial condition. Finally, simulation results verify the effectiveness of the proposed control strategy. 相似文献
4.
5.
6.
The objective of this paper is to investigate the consensus of the multi-agent systems with nonlinear coupling function and external disturbances. The disturbance includes two parts, one part is supposed to be generated by an exogenous system, which is not required to be neutrally stable as in the output
regulation theory, the other part is the modeling uncertainty in the exogenous disturbance system. A novel composite disturbance observer based control (DOBC) and H∝ control scheme is presented so that the disturbance with the exogenous system can be estimated and compensated and the consensus of the multi-agent systems with fixed and switching graph can be reached by using H∝ control law. Simulations demonstrate the advantages of the proposed DOBC and H∝ control scheme. 相似文献
7.
In this article, a novel adaptive fixed-time neural network tracking control scheme for nonlinear interconnected systems is proposed. An adaptive backstepping technique is used to address unknown system uncertainties in the fixed-time settings. Neural networks are used to identify the unknown uncertainties. The study shows that, under the proposed control scheme, each state in the system can converge into small regions near zero with fixed-time convergence time via Lyapunov stability analysis. Finally, the simulation example is presented to demonstrate the effectiveness of the proposed approach. A step-by-step procedure for engineers in industry process applications is proposed. 相似文献
8.
A new fixed-time adaptive neural network control strategy is designed for pure-feedback non-affine nonlinear systems with state constraints according to the feedback signal of the error system. Based on the adaptive backstepping technology, the Lyapunov function is designed for each subsystem. The neural network is used to identify the unknown parameters of the system in a fixed-time, and the designed control strategy makes the output signal of the system track the expected signal in a fixed-time. Through the stability analysis, it is proved that the tracking error converges in a fixed-time, and the design of the upper bound of the setting time of the error system only needs to modify the parameters and adaptive law of the controlled system controller, which does not depend on the initial conditions. 相似文献
9.
Containment control of first-order multi-agent systems with uncertain topologies and communication time-delays is studied. Suppose system topologies are dynamically changed, a containment control algorithm with time-varying delays is presented. The stability of the control algorithm is studied under the assumption that communication topologies are jointly-connected, and constraint condition of distributed containment control for delayed multi-agent systems is derived with the aid of Lyapunov-Krasovskii function. Simulation results are provided to prove the correctness and effectiveness of the conclusion. 相似文献
10.
In this paper, we investigate a leader-following tracking problem for multi-agent systems with bounded inputs. We propose a distributed bounded protocol for each follower to track a leader whose states may not be completely measured. We theoretically prove that each agent can follow the leader with estimable track errors. Finally, some numerical simulations are presented to illustrate our theoretical results. 相似文献
11.
In this paper, we investigate a leader-following tracking problem for multi-agent systems with bounded inputs. We propose a distributed bounded protocol for each follower to track a leader whose states may not be completely measured. We theoretically prove that each agent can follow the leader with estimable track errors. Finally, some numerical simulations are presented to illustrate our theoretical results. 相似文献
12.
To solve the dynamical consensus problem of second-order multi-agent systems with communication delay,delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results. 相似文献
13.
Huan Luo Yinhe Wang Ruidian Zhan Xuexi Zhang Haoxiang Wen Senquan Yang 《Entropy (Basel, Switzerland)》2021,23(8)
This paper investigates the cluster-delay mean square consensus problem of a class of first-order nonlinear stochastic multi-agent systems with impulse time windows. Specifically, on the one hand, we have applied a discrete control mechanism (i.e., impulsive control) into the system instead of a continuous one, which has the advantages of low control cost, high convergence speed; on the other hand, we considered the existence of impulse time windows when modeling the system, that is, a single impulse appears randomly within a time window rather than an ideal fixed position. In addition, this paper also considers the influence of stochastic disturbances caused by fluctuations in the external environment. Then, based on algebraic graph theory and Lyapunov stability theory, some sufficiency conditions that the system must meet to reach the consensus state are given. Finally, we designed a simulation example to verify the feasibility of the obtained results. 相似文献
14.
This paper investigates the leader-following tracking consensus problem for second-order multi-agent systems with time delays and nonlinear dynamics in noisy environments on the conditions of fixed and switching directed topologies. Based on a novel velocity decomposition technique and stochastic analysis, a measurement-based distributed tracking control protocol is proposed, under which all agents can track the leader in mean square. Simulation results are also given to illustrate the effectiveness of the proposed protocol. 相似文献
15.
Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control 下载免费PDF全文
We investigate the tracking control for a class of nonlinear heterogeneous leader-follower multi-agent systems(MAS)with unknown external disturbances. Firstly, the neighbor-based distributed finite-time observers are proposed for the followers to estimate the position and velocity of the leader. Then, two novel distributed adaptive control laws are designed by means of linear sliding mode(LSM) as well as nonsingular terminal sliding mode(NTSM), respectively. One can prove that the tracking consensus can be achieved asymptotically under LSM and the tracking error can converge to a quite small neighborhood of the origin in finite time by NTSM in spite of uncertainties and disturbances. Finally, a simulation example is given to verify the effectiveness of the obtained theoretical results. 相似文献
16.
In this paper, the distributed optimal control method is used to study the cooperative formation of heterogeneous multi-agents in the air–ground environment. The considered system consists of an unmanned aerial vehicle (UAV) and an unmanned ground vehicle (UGV). The optimal control theory is introduced into the formation control protocol, the distributed optimal formation control protocol is designed, and the stability is verified by graph theory. Furthermore, the cooperative optimal formation control protocol is designed, and the stability is analyzed using a block Kronecker product and matrix transformation theory. Through the comparison of simulation results, the introduction of optimal control theory shortens the formation time of the system and accelerates the convergence speed of the system. 相似文献
17.
为了消除经典滑模变结构控制在导弹控制系统中产生的抖振现象,提出了一种新型的基于二阶滑模变结构控制的导弹姿态控制系统设计方法.为便于导弹姿态控制系统的设计,将复杂导弹姿态运动方程分解成三个简单的子系统,即俯仰通道子系统、偏航通道子系统和滚转通道子系统,同时将三个通道间的耦合项等效为外界干扰.当三通道间的耦合项有界时,分别给出了三个子系统的控制器.仿真结果验证了所提方法的正确性和有效性,并且有效消除了系统抖振现象. 相似文献
18.
针对现有的变结构滑模控制切换面单一性会导致系统状态在原点处收敛缓慢的缺陷,对自主式水下机器人(AUVs)变结构滑模控制设计了折线型的切换面,并且进一步改进实现了速度控制和定点定速控制。改进的切换面由斜率不同的自线段构成,并在拐点处通过S型函数光滑过渡。将切换面的斜率减小到0时,则可以实现速度控制,同时为了消除速度控制的稳态误差,引进了采用能智积分方法的积分项。最后在某AUV上进行仿真实验,结果证实了应用折线型切换面可以减少控制系统的上升时间,提高反应速度;速度控制的稳态误差接近0,并很好地实现定点定速的控制效果。该方法可以有效用于AUVs的控制。 相似文献
19.
20.
针对高超声速飞行器飞行过程中存在的高度非线性、强耦合、参数不确定性等问题提出了一种基于滑模边界层模糊自适应的控制方法;首先将纵向模型进行精确线性化,通过引入一个滑模边界层可调参数,在边界层外施加基于正切趋近律的准滑模控制律;在边界层内,去掉准滑模控制律,采用饱和函数法设计的控制律;边界层参数用模糊逻辑系统进行在线调节,从而消除了系统处于准滑动模态时的高频抖振;仿真结果表明:该方法在保证控制系统具有良好跟踪性能的同时,具有削弱抖振的能力和强鲁棒性。 相似文献