首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When femtosecond laser pulses interfere with chirped femtosecond laser pulses in As2S3 fiber, a chirped fiber grating is formed. An analytical expression is given to describe the chirped grating, and its Bragg reflectivity is calculated. Because of the high photosensitive effect of As2S3 material, the chirped fiber grating has a wide Bragg reflective spectrum and high reflectivity by choosing proper parameters. This indicates that the chirped fiber grating can be used as a stretcher in the femtosecond chirped pulse amplification (CPA) system.  相似文献   

2.
An optical pulse autocorrelator for rapid and slow scanning is described in this paper. Using an audio loudspeaker on one arm, an interferometric rapid-scanning signal of the output from a high-repetition laser oscillator is obtained. However, by adjusting the positions of the mirrors and using a step-motor on another arm, the intensity autocorrelation function of the output from a low-repetition laser amplifier can be easily measured. Using all-reflecting optics and an adequate nonlinear crystal, the whole instrument is very compact and has been used to measure sub-20 fs light pulses in both configurations with excellent agreement. In the slow-scanning configuration, a pulse train as long as 500ps has been determined. Using this autocorrelator, the home-made JIGUANG-I CPA laser facility was characterized for its pulse duration evolution.  相似文献   

3.
A simple configuration dual-wavelength fiber laser,by combining the first-order Brillouin laser and the residual pump laser,is proposed and experimentally demonstrated.A 1 km long single-mode fiber is used as the stimulated Brillouin scattering gain medium pumped by a narrow linewidth tunable laser source(TLS).Through simply adjusting the TLS output power,power-equalized dual-wavelength lasing can be achieved with a high optical signal to noise ratio(OSNR) of 80 d B.With the good tunability of the TLS,the dual-wavelength fiber laser has a tunable range of ~130 nm,and simultaneously the beat frequency of the two lasing wavelengths can be tuned from 10.1875 to 11.0815 GHz with the tunable range of 0.8940 GHz.The high stability of the dualwavelength operation is experimentally verified by the measured beat frequency fluctuation of ≤6 MHz in 1 h and power fluctuation of ≤0.03 d B in 2 h.The temporal characteristics of the fiber laser are also investigated experimentally.The fiber laser will find good applications in fiber sensing and microwave photonics areas.  相似文献   

4.
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave–concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 m J with an FWHM pulse width of 7 ns at100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.  相似文献   

5.
A new configuration of double-pulse laser heating is proposed for x-ray laser research. The double-pulse consisting of a main pulse (first) and a "tailed" pulse (second) with less energy can increase the fraction of highly ionized states efficiently. Population inversion in He-like Al ions between the n=3 and 2 levels has been found with such a novel laser heating configuration. The possible physical mechanisms are discussed.  相似文献   

6.
The filtering mechanism of a free output coupler mode-locked laser based on large-mode-area photonic-crystal fibre is analysed. A filtering-soliton mode-locked laser with 495~fs pulse width and 21 nJ pulse energy is achieved. Another novel cavity configuration is established to eliminate the filtering effect. Pulses, each 457~fs in width and 16.5 nJ in energy, are obtained in a soliton-like regime. Pulses, each 387~fs in width and 15.8 nJ in energy, are also generated in a stretched pulse regime and could be dechirped to 119~fs externally to the cavity.  相似文献   

7.
A high-power fiber laser in an all-fiber format is reported. The system consists of 36 pump ports, which use both counter and forward pump configuration. In the experiment, 1 008-W output power is obtained when 24 pump ports are used with a total pump power of 1477 W. The optical-to-optical conversion efficiency is 68% and the 3-dB bandwidth of laser output increases with output power. Presently, the output power is only limited by the pump source. It can be predicted that the laser power can be further scaled if more pump sources are utilized.  相似文献   

8.
A theoretical study of intra-cavity laser cooling by anti-Stokes luminescence in a rare-earth doped glass is performed. Compared with cooling in an external cavity by multipassing the radiation, intra-cavity cooling has the advantage of high pumping power and high-absorbed power. However, one must ensure that the cavity can still form a laser by locating the material in the cavity. A model is developed to evaluate the enhancement factor and the absorbed power. The results show that for a low optical density, especially when the sample length is less than 2ram, the intracavity configuration is a very efficient method for laser cooling. The diode laser, which may become the best candidate for our model, is briefly discussed.  相似文献   

9.
A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the direct relationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.  相似文献   

10.
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.  相似文献   

11.
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.  相似文献   

12.
Electron acceleration in a tightly focused ultra-intensity linear polarized laser beam is investigated numerically. It has been found that the acceleration is strong phase dependent and is periodic to the variety of the initial laser field phase. When optimal initial parameters are chosen, the electron can be accelerated effectively. The accelerated electrons are emitted in pulses of which the full width is less than the half period of the laser field.  相似文献   

13.
Electron acceleration in a tightly focused ultra-intensity linear polarized laser beam is investigated numerically. It has been found that the acceleration is strong phase dependent and is periodic to the variety of the initial laser field phase. When optimal initial parameters are chosen, the electron can be accelerated effectively. The accelerated electrons are emitted in pulses of which the full width is less than the half period of the laser field.  相似文献   

14.
Considering the atmospheric extinction and turbulence effects,we investigate the propagation performances of supercontinuum laser sources in atmospheric turbulence statistically by using the numerical simulation method,and the differences in propagation properties between the super-continuum(SC)laser and its pump laser are also analyzed.It is found that the propagation characteristics of super-continuum laser are almost similar to those of the pump laser.The degradation of source coherence degree may cause the relative beam spreading and scintillation indexes to decrease at different propagation distances or different turbulence strengths.The root-mean-square value of beam wandering is insensitive to the variation of source correlation length,and less aperture averaging occurs when the laser source becomes less coherent.Additionally,from the point of view of beam wandering,the SC laser has no advantage over the pump laser.Although the pump laser can bring about a bigger aperture average,the SC laser has a lower scintillation which may be due to the multiple wavelength homogenization effects on intensity fluctuations.This would be the most important virtue of the SC laser that can be utilized to improve the performance of laser engineering.  相似文献   

15.
1 Significance of All Solid State Laser (DPL) Technology in Field of LaserBecause of the advantages of high conversion efficiency, good beam quality, small size and light weight, DPL becomes the hotspot and priority of development of laser technology. It may be the main body of laser in the future and replace gas laser and liquid laser. It is a great revolution of laser technology.The developed countries vie in developing DPL. China has achieved great success in this field, but there is a wide gap between the developed countries and us. We should attach great importance to it.  相似文献   

16.
The feasibility of fenestration operation in middle ear bone with pulsed infrared laser is evaluated. Healthy male New Zealand rabbits in vivo are used in the experiment. Middle ear mastoid bone of animal model is completely exposed with conventional methods, and then a pulsed CO2 laser (10.6 μm) and an Er:YAG laser (2.94 μm) are used to perform the fenestration operation. Diamond drill is also used as a control group. The total operation time and light irradiation time are recorded and the opening efficiency is assessed. The morphological changes and thermal damage around the opening window on the middle ear bone are examined. It is shown that both laser systems are suitable for the fenestration operation in middle ear bone, and this no-touch technique has a lot of benefits compared with traditional methods. The bleeding during operation has an important effect on operation time and thermal injury and needs to be controlled efficiently in further study.  相似文献   

17.
A single-frequency pulsed erbium-doped fiber(EDF) laser with master-oscillator power-amplifier configuration at 1 533 nm is developed. A short-cavity,erbium-doped phosphate glass fiber laser is utilized as a seeder laser with a linewidth of 5 kHz and power of 40 mW. The seeder laser is modulated to be a pulse laser with a repetition rate of 10 kHz and pulse duration of 500 ns. The amplifier consists of two pre-amplifiers and one main amplifier. The detailed characteristics of the spectrum and linewidth of the amplifiers are presented. A pulse energy of 116 μJ and a linewidth of 1.1 MHz are obtained. This laser can be a candidate transmitter for an all-fiber Doppler wind lidar in the boundary layer.  相似文献   

18.
A novel configuration of the tunable fiber laser with uniform wavelength spacing in dense wavelength division multiplexing (DWDM) application is proposed.The ring type tunable fiber laser consists of an all-fiber comb filter which determines the wavelength spacing,and a piece of adjustable fiber grating to select the discrete lasing wavelength for DWDM application.The proposed all-fiber ring type tunable laser has potential application in the DWDM and other optical systems due to its advantages such as narrow linewidth,easy tuning,uniform wavelength interval,etc..  相似文献   

19.
There is an increasing demand on the measurable velocity of laser interferometer in manufacturing tech- nologies.The maximum measurable velocity is limited by frequency difference of laser source,optical configuration,and electronics bandwidth.An experimental setup based on free falling movement has been demonstrated to measure the maximum measurable velocity for interferometers.Measurement results show that the maximum measurable velocity is less than its theoretical value.Moreover,the effect of kinds of factors upon the measurement results is analyzed,and the results can offer a reference for industrial ap- plications.  相似文献   

20.
The self-injection and acceleration of electrons in a hollow plasma channel driven by ultrashort intense laser pulses is investigated by Particle-in-Cell(PIC) simulations. It is shown that electrons from the bubble sheath will be self-injected into the hollow plasma channel and move radially towards the channel border due to the lack of focusing force in the hollow plasma channel. After several reflections near the channel wall by the strong focusing force, a self-injected electron bunch can be confined in the hollow plasma channel and quasi-phase-stably accelerated forward for the whole laser–plasma interaction process. These electrons using optical and plasma-related self-injection method can be self-organized to remain in the rear of the bubble, where the accelerating electric field is transversely uniform and nearly plateau along the propagation axis. Therefore, the self-injected electron bunch can be accelerated in a steady state without obvious oscillation and has a high quality with narrow energy spread and low divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号