首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ab initio calculations have been performed for the complexes of DMSO and phenyltrifluorosilane (PTS) and its derivatives with a substituent of NH3, OCH3, CH3, OH, F, CHO, CN, NO2, and SO3H. It is necessary to use sufficiently flexible basis sets, such as aug’-cc-pVTZ, to get reliable results for the Si···O tetrel bonds. The tetrel bond in these complexes has been characterized in views of geometries, interaction energies, orbital interactions and topological parameters. The electron-donating group in PTS weakens this interaction and the electron-withdrawing group prominently strengthens it to the point where it exceeds that of the majority of hydrogen bonds. The largest interaction energy occurs in the p-HO3S-PhSiF3···DMSO complex, amounting to −122 kJ/mol. The strong Si···O tetrel bond depends to a large extent on the charge transfer from the O lone pair into the empty p orbital of Si, although it has a dominant electrostatic character. For the PTS derivatives of NH2, OH, CHO and NO2, the hydrogen bonded complex is favorable to the tetrel bonded complex for the NH2 and OH derivatives, while the σ-hole interaction prefers the π-hole interaction for the CHO and NO2 derivatives.  相似文献   

2.
Using ab initio calculations, we have investigated the possibility of formation of triangular XBr:SHX:PH2X complexes, where X = F, Cl, Br, CN, NC, OH, NH2, and OCH3. These complexes are formed through the interaction of a positive electrostatic potential region (σ‐hole) on a molecule with the negative region in another one. The results show that the combined halogen, chalcogen, and pnictogen interactions can give rise to stable cyclic structures. The interaction energies of these complexes span over a wide range, from ?3.55 to ?24.93 kcal/mol. Nice quadratic correlations are found between the interaction energies and binding distances in the trimers. To understand the nature of the interactions in these complexes, molecular electrostatic potential and quantum theory of atoms in molecule analyses are performed. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
The mutual interplay between pnicogen–π and tetrel bond in the formation of PF3⊥X–Pyr…SiH3CN ternary complexes has been investigated via a computational chemistry at MP2/aug-cc-pVDZ level of theory. We proved by computational NMR data the effect of electron-withdrawing and electron-donating substituents on 1tJ(N-Si) across 15N...35Si tetrel bonds was investigated at M06-2X/aug-cc-pVDZ levels of theory in PF3⊥CN–Pyr…SiH3CN complex. The nature of the interactions has been studied by means of symmetry-adapted perturbation theory (SAPT) and molecular electrostatic potentials (MEP). The electrostatic interaction played a major role in the change of tetrel bond interaction strength in the X–Pyr…SiH3CN binary systems, whereas the change of pnicogen–π strength in the PF3⊥X–Pyr complexes was caused jointly by the dispersion interactions. Energy decomposition indicates that the percentage of the electrostatic term in the tetrel bond system constitutes in the total attractive binding energies, while the percentage of the dispersion term in the pnicogen bonding constitutes in the attractive binding energies. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also performed to unveil the mechanism of these interactions in the title complexes.  相似文献   

4.
Carbonate MCO3 (M = Zn, Cd) can act as both Lewis acid and base to engage in a spodium bond with nitrogen-containing bases (HCN, NHCH2, and NH3) and a chalcogen bond with SeHX (X = F, Cl, OH, OCH3, NH2, and NHCH3), respectively. There is also a weak hydrogen bond in the chalcogen-bonded dyads. Both chalcogen and hydrogen bonds become stronger in the order of F > Cl > OH > OCH3 > NH2 > NHCH3. The chalcogen-bonded dyads are stabilized by a combination of electrostatic and charge transfer interactions. The interaction energy of chalcogen-bonded dyad is less than −10 kcal/mol at most cases. Furthermore, the chalcogen bond can be strengthened through coexistence with a spodium bond in N-base-MCO3-SeHX. The enhancement of chalcogen bond is primarily attributed to the charge transfer interaction. Additionally, the spodium bond is also enhanced by the chalcogen bond although the corresponding enhancing effect is small.  相似文献   

5.
Ab initio calculation at the MP2/aug-cc-pVTZ level has been performed on the π-hole based NSi tetrel bonded complexes between substituted pyridines and H2SiO. The primary aim of the study is to find out the effect of substitution on the strength and nature of this tetrel bond, and its similarity/difference with the NC tetrel bond. Correlation between the strength of the NSi bond and several molecular properties of the Lewis acid (H2SiO) and base (pyridines) are explored. The properties of the tetrel bond are analyzed using AIM, NBO, and symmetry-adapted perturbation theory calculations. The complexes are characterized with short NSi intermolecular distances and high binding energies ranging between −142.72 and −115.37 kJ/mol. The high value of deformation energy indicates significant geometrical distortion of the monomer units. The AIM and NBO analysis reveal significant coordinate covalent bond character of the N⋅⋅⋅Si π-hole bond. Sharp differences are also noticed in the orbital interactions present in the N⋅⋅⋅Si and N⋅⋅⋅C tetrel bonds.  相似文献   

6.
The spodium–π bonding between MX2 (M = Zn, Cd, and Hg; X = Cl, Br, and I) acting as a Lewis acid, and C2H2/C2H4 acting as a Lewis base was studied by ab initio calculations. Two types of structures of cross (T) and parallel (P) forms are obtained. For the T form, the X–M–X axis adopts a cross configuration with the molecular axis of C≡C or C=C, but both of them are parallel in the P form. NCI, AIM, and electron density shifts analyses further, indicating that the spodium–π bonding exists in the binary complexes. Spodium–π bonding exhibits a partially covalent nature characterized with a negative energy density and large interaction energy. With the increase of electronegativity of the substituents on the Lewis acid or its decrease in the Lewis base, the interaction energies increase and vice versa. The spodium–π interaction is dominated by electrostatic interaction in most complexes, whereas dispersion and electrostatic energies are responsible for the stability of the MX2⋯C2F2 complexes. The spodium–π bonding further complements the concept of the spodium bond and provides a wider range of research on the adjustment of the strength of spodium bond.  相似文献   

7.
Using ab initio calculations, the geometries, interaction energies and bonding properties of chalcogen bond and halogen bond interactions between YOX4 (Y = S, Se; X = F, Cl, Br) and NH3 molecules are studied. These binary complexes are formed through the interaction of a positive electrostatic potential region (σ-hole) on the YOX4 with the negative region in the NH3. The ab initio calculations are carried out at the MP2/aug-cc-pVTZ level, through analysis of molecular electrostatic potentials, quantum theory of atoms in molecules and natural bond orbital methods. Our results indicate that even though the chalcogen and halogen bonds are mainly dominated by electrostatic effects, but the polarization and dispersion effects also make important contributions to the total interaction energy of these complexes. The examination of interaction energies suggests that the chalcogen bond is always favored over the halogen bond for all of the binary YOX4:NH3 complexes.  相似文献   

8.
Molecules of the type XYT = Ch (T = C, Si, Ge; Ch = S, Se; X,Y = H, CH3, Cl, Br, I) contain a σ-hole along the T = Ch bond extension. This hole can engage with the N lone pair of NCH and NCCH3 so as to form a chalcogen bond. In the case of T = C, these bonds are rather weak, less than 3 kcal/mol, and are slightly weakened in acetone or water. They owe their stability to attractive electrostatic energy, supplemented by dispersion, and a much smaller polarization term. Immersion in solvent reverses the electrostatic interaction to repulsive, while amplifying the polarization energy. The σ-holes are smaller for T = Si and Ge, even negative in many cases. These Lewis acids can nonetheless engage in a weak chalcogen bond. This bond owes its stability to dispersion in the gas phase, but it is polarization that dominates in solution.  相似文献   

9.
The interactions between NH3, its methylated and chlorinated derivatives and CS2 are investigated by ab initio CCSD(T) and density functional BLYP‐D3 methods. The CCSD(T)/aug‐cc‐pVTZ calculated interaction energies of complexes characterized by the S···N chalcogen bonds range between ?1.71 and ?2.78 kcal mol?1. The S···N bonds are studied by atoms in molecules, natural bond orbital, and noncovalent interaction methods. The lack of correlation between the interaction energies of methylated amines complexes and the electrostatic potential results from the lone pair effect in aliphatic amines. Different structures of CS2 complexed with ammonia derivatives, stabilized by other than the S···N chalcogen bonds, are also predicted. These structures are characterized by interaction energies ranging between 1.15 and 3.46 kcal mol?1. The results show that the complexing ability of CS2 is not very high but this molecule is able to attack the electrophilic or nucleophilic sites of a guest molecule.  相似文献   

10.
Quantum chemical calculations are applied to complexes of 6-OX-fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H-bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order O<S<Se<Te, whereas the pattern is murkier for the pnicogen donors. In terms of competition, most halogen bonds to pnicogen donors are stronger than their H-bond analogues, but there is no clear pattern with respect to chalcogen donors. O prefers a H-bond, while halogen bonds are favored by Te. For S and Se, I-bonds are strongest, followed Br, H, and Cl-bonds in that order.  相似文献   

11.
用从头算量子化学方法MP2 与CCSD(T)研究了H2XP和SHY (X, Y=H, F, Cl, Br)分子的P与S之间形成的磷键X―P…S与硫键Y―S…P的本质与规律以及取代基X与Y对成键的影响. 计算结果表明, 硫键比磷键强, 连接在Lewis 酸上的取代基的电负性增大导致形成的磷键或硫键增强, 键能增大, 对单体的结构和性质的影响也增大; 而连接在Lewis 碱上的取代基效应则相反. 硫键键能为8.37-23.45 kJ·mol-1, 最强的硫键结构是Y 电负性最大而X 电负性最小的HFS…PH3, CCSD(T)计算的键能是16.04 kJ·mol-1; 磷键键能为7.54-14.65 kJ·mol-1, 最强的磷键结构是X 电负性最大而Y 电负性最小的H2FP…SH2, CCSD(T)计算的键能是12.52 kJ·mol-1. 对磷键与硫键能量贡献较大的是交换与静电作用. 分子间超共轭lp(S)-σ*(PX)与lp(P)-σ*(SY)对磷键与硫键的形成起着重要作用, 它导致单体的极化, 其中硫键的极化效应较大, 从而有一定的共价特征.  相似文献   

12.
A σ-hole is defined as an electron-deficient region on the extension of a covalently bonded group IV–VII atoms. If the electronic density in the σ-hole is sufficiently low, then this region will have a positive electrostatic potential, which allows attractive noncovalent interactions with negative sites. SO2X2 and SeO2X2 (X = F, Cl and Br) have three Lewis acid sites of σ-hole located in the outermost of chalcogen atom and X end, participating in the chalcogen and halogen bonds with NH3 and H2O, respectively. MP2/aug-cc-pVTZ and M06-2X/aug-cc-pVTZ calculations reveal that for a given halogen atom, SeO2X2 forms stronger chalcogen bond interactions than SO2X2 counterpart. Almost a perfect linear relationship is evident between the interaction energies and the magnitudes of the product of most positive and negative electrostatic potentials. The interaction energies calculated by M06-2X and MP2 methods are almost consistent with each other.  相似文献   

13.
The complexes between borazine and TH3F/F2TO/H2TO (T = C, Si, Ge) are investigated with high-level quantum chemical calculations. Borazine has three sites of negative electrostatic potential: the N atom, the ring center, and the H atom of the B H bond, whereas TH3F and F2TO/H2TO provide the σ-hole and π-hole, respectively, for the tetrel bond. The N atom of borazine is the favored site for both the σ and π-hole tetrel bonds. Less-stable dimers include a σ-tetrel bond to the borazine ring center and to the BH proton. The π-hole tetrel-bonded complexes are more strongly bound than are their σ-hole counterparts. Due to the coexistence of both T···N tetrel and B···O triel bonding, the complexes of borazine with F2TO/H2TO (T = Si and Ge) are very stable, with interaction energies up to −108 kcal/mol. The strongly bonded complexes are accompanied by substantial net charge transfer from F2TO/H2TO to borazine.  相似文献   

14.
Insight into the key factors driving the competition of halogen and hydrogen bonds is obtained by studying the affinity of the Lewis bases trimethylamine (TMA), dimethyl ether (DME), and methyl fluoride (MF) towards difluoroiodomethane (CHF2I). Analysis of the infrared and Raman spectra of solutions in liquid krypton containing mixtures of TMA and CHF2I and of DME and CHF2I reveals that for these Lewis bases hydrogen and halogen‐bonded complexes appear simultaneously. In contrast, only a hydrogen‐bonded complex is formed for the mixtures of CHF2I and MF. The complexation enthalpies for the C?H ??? Y hydrogen‐bonded complexes with TMA, DME, and MF are determined to be ?14.7(2), ?10.5(5) and ?5.1(6) kJ mol?1, respectively. The values for the C?I ??? Y halogen‐bonded isomers are ?19.0(3) kJ mol?1 for TMA and ?9.9(8) kJ mol?1 for DME. Generalization of the observed trends suggests that, at least for the bases studied here, softer Lewis bases such as TMA favor halogen bonding, whereas harder bases such as MF show a substantial preference for hydrogen bonding.  相似文献   

15.
Quantum chemical calculations using gradient-corrected density functional theory (B3LYP) and ab initio methods at the MP2 level are reported for the geometries and bond energies of the nitrido complexes Cl2 (PH3)3ReN–X (X = BH3, BCl3, BBr3, AlH3, AlCl3, AlBr3, GaH3, GaCl3, GaBr3, O, S, Se, Te). The theoretical geometries are in excellent agreement with experimental values of related complexes which have larger phosphine ligands. The parent nitrido complex Cl2(PH3)3ReN is a very strong Lewis base. The calculated bond dissociation energy of Cl2(PH3)3ReN–AlCl3 is D e = 43.7 kcal/mol, which is nearly as high as the bond energy of Me3N–AlCl3. The donor-acceptor bonds of the other Cl2(PH3)3ReN–AY3 complexes are also very strong. Even stronger N–X bonds are predicted for most of the nitrido-chalcogen complexes, which exhibit the trend X = O ≫ S > Se > Te. Analysis of the electronic structure shows that the parent compound Cl2(PH3)3ReN has a Re–N triple bond. The Re–N σ bond is clearly polarized towards nitrogen, while the two π bonds are nearly nonpolar. The Re–N σ and π bonds become more polarized toward nitrogen when a Lewis acid or a chalcogen atom is attached. Bonding in AY3 complexes should be described as Cl2(PH3)3ReE≡N→AY3, while the chalcogen complexes should be written with double bonds Cl2(PH3)3Re=N=X. The charge-decomposition analysis indicates that the nitrogen-chalcogen bonds of the heavier chalcogen complexes with X = S, Se, Te can also be interpreted as donor-acceptor bonds between the nitrido complex acting as a Lewis base and the chalcogen atom with an empty p(σ) orbital acting as a Lewis acid. The nitrido oxo complex Cl2(PH3)3 Re=N=O has a covalent N–O double bond. Received: 27 July 1998 / Accepted: 26 October 1998 / Published online: 16 March 1999  相似文献   

16.
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π–π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.  相似文献   

17.
Halogen‐ and chalcogen‐based σ‐hole interactions have recently received increased interest in non‐covalent organocatalysis. However, the closely related pnictogen bonds have been neglected. In this study, we introduce conceptually simple, neutral, and monodentate pnictogen‐bonding catalysts. Solution and in silico binding studies, together with high catalytic activity in chloride abstraction reactions, yield compelling evidence for operational pnictogen bonds. The depth of the σ holes is easily varied with different substituents. Comparison with homologous halogen‐ and chalcogen‐bonding catalysts shows an increase in activity from main group VII to V and from row 3 to 5 in the periodic table. Pnictogen bonds from antimony thus emerged as by far the best among the elements covered, a finding that provides most intriguing perspectives for future applications in catalysis and beyond.  相似文献   

18.
Halogen‐ and chalcogen‐based σ‐hole interactions have recently received increased interest in non‐covalent organocatalysis. However, the closely related pnictogen bonds have been neglected. In this study, we introduce conceptually simple, neutral, and monodentate pnictogen‐bonding catalysts. Solution and in silico binding studies, together with high catalytic activity in chloride abstraction reactions, yield compelling evidence for operational pnictogen bonds. The depth of the σ holes is easily varied with different substituents. Comparison with homologous halogen‐ and chalcogen‐bonding catalysts shows an increase in activity from main group VII to V and from row 3 to 5 in the periodic table. Pnictogen bonds from antimony thus emerged as by far the best among the elements covered, a finding that provides most intriguing perspectives for future applications in catalysis and beyond.  相似文献   

19.
Three novel isostructural equiatomic gold tetrel pnictides, AuSiAs, AuGeP, and AuGeAs, were synthesized and characterized. These phases crystallize in the noncentrosymmetric (NCS) monoclinic space group Cc (no. 9), featuring square-planar Au within cis-[AuTt2Pn2] units (Tt=tetrel, Si, Ge; Pn=pnictogen, P, As). This is in drastic contrast to the structure of previously reported AuSiP, which exhibits typical linear coordination of Au with Si and P. Chemical bonding analysis through the electron localization function suggests covalent two-center two-electron Tt−Pn bonds, and three-center Au−Tt−Au and Au−Pn−Au bonds with 1.6 e per bond. X-ray photoelectron spectroscopy studies support the covalent and nonionic nature of Au−Pn and Au−Tt bonds. The title materials were found to be n-type narrow-gap semiconductors or semimetals, with nearly temperature-independent electrical resistivities and low thermal conductivities. A combination of the semimetallic properties with tunable NCS structure provides opportunities for the development of materials based on gold tetrel pnictides.  相似文献   

20.
The intermolecular π‐hole···π‐electrons interactions between F2ZO (Z = C, Si, Ge) molecules and unsaturated hydrocarbons including acetylene, ethylene, 1,3‐butadiene and benzene were constructed to reveal the differences of tetrel bonds forming by carbon and heavier tetrel atoms. The ab initio computation in association with topological analysis of electron density, natural bond orbital, and energy decomposition analysis demonstrate that the strength of Si···π and Ge···π tetrel bonds is much stronger than that of C···π tetrel bonds. The Si···π and Ge···π tetrel bonds exhibit covalent or partially covalent interaction nature, while the weak C···π tetrel bonds display the hallmarks of noncovalent interaction, the electrostatic interaction is the primary influencing factor. The Si···π and Ge···π interactions are determined by both the σ‐ and π‐electron densities, while the C···π interactions are dominated mainly by the π‐electron densities. The π‐hole···π‐electrons tetrel bonds are dominated by electrostatic interaction, and polarization has a comparable contribution in the Si···π and Ge···π tetrel bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号