首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal Plasma Technology: Where Do We Stand and Where Are We Going?   总被引:16,自引:0,他引:16  
In this overview, an attempt is made to assess the present and future research and development in thermal plasma processing of materials restricted to (1) thermal plasma coating technologies, (2) thermal plasma synthesis of fine powders, (3) thermal plasma waste destruction, and (4) thermal plasma spheroidization and densification. Since thermal plasma processing is, in general, governed by a large number of parameters, implementation of controls becomes mandatory. The lack of sufficient controls combined with economic drawbacks in some cases has been the main obstacle for the growth of thermal plasma technology. Present R&D efforts, however, address these problems.  相似文献   

2.
Structural mass spectrometry (MS) is gaining increasing importance for deriving valuable three‐dimensional structural information on proteins and protein complexes, and it complements existing techniques, such as NMR spectroscopy and X‐ray crystallography. Structural MS unites different MS‐based techniques, such as hydrogen/deuterium exchange, native MS, ion‐mobility MS, protein footprinting, and chemical cross‐linking/MS, and it allows fundamental questions in structural biology to be addressed. In this Minireview, I will focus on the cross‐linking/MS strategy. This method not only delivers tertiary structural information on proteins, but is also increasingly being used to decipher protein interaction networks, both in vitro and in vivo. Cross‐linking/MS is currently one of the most promising MS‐based approaches to derive structural information on very large and transient protein assemblies and intrinsically disordered proteins.  相似文献   

3.
4.
5.
Although the use of hydrogen exchange (HX) mass spectrometry (MS) to study proteins and protein conformation is now over 20 years old, the perception lingers that it still has “issues.” Is this method, in fact, still in the quicksand with many remaining obstacles to overcome? We do not think so. This critical insight addresses the “issues” and explores several broad questions including, have the limitations of HX MS been surmounted and has HX MS achieved “indispensable” status in the pantheon of protein structural analysis tools.  相似文献   

6.
Medicinal chemistry and, in particular, drug design have often been perceived as more of an art than a science. The many unknowns of human disease and the sheer complexity of chemical space render decision making in medicinal chemistry exceptionally demanding. Computational models can assist the medicinal chemist in this endeavour. Provided here is an overview of recent examples of automated de novo molecular design, a discussion of the concepts and computational approaches involved, and the daring prediction of some of the possibilities and limitations of drug design using machine intelligence.  相似文献   

7.
8.
The situation in solar neutrino science has changed drastically in the past decade, with results now available from five neutrino experiments that use different methods to look at different regions of the solar-neutrino energy-spectrum. While the goal of all of these experiments is physics, they all rely heavily on chemistry and radiochemistry. Three of these experiments are radiochemical, the 37Cl detector and the two different forms of 71Ga detectors used in GALLEX and SAGE are based on the chemical isolation and counting of the radioactive products of neutrino interactions. The other two, Kamiokande and its improved successor, Super- Kamiokande, detect neutrinos in real time; however, they also depend sensitively on radiochemistry in that (as in all the solar neutrino detectors) radioactive contaminants must be controlled at very low levels. It is noteworthy that all of these experiments (a) have detected solar neutrinos, but (b) all report deficits of the observed neutrinos relative to the predictions of standard solar models — the so-called "solar neutrino problem". In this paper, I review the basic principles of operation of these neutrino detectors, report their recent results, and discuss some of the interpretations that are now in vogue. I then describe some of the new neutrino detectors that are under construction or being developed, and discuss the kinds of new results we might expect to see in the early years of the new millennium.  相似文献   

9.
The presence of water in the Earth has long been an enigma. However, computer modelling techniques have shown that the adsorption of water onto the fractal surfaces of interplanetary dust particles, which are present in the planetary accretion disk, is sufficiently strong to provide a viable origin of terrestrial water.  相似文献   

10.
The net electrostatic charge (Z) of a folded protein in solution represents a bird's eye view of its surface potentials—including contributions from tightly bound metal, solvent, buffer, and cosolvent ions—and remains one of its most enigmatic properties. Few tools are available to the average biochemist to rapidly and accurately measure Z at pH≠pI. Tools that have been developed more recently seem to go unnoticed. Most scientists are content with this void and estimate the net charge of a protein from its amino acid sequence, using textbook values of pKa. Thus, Z remains unmeasured for nearly all folded proteins at pH≠pI. When marveling at all that has been learned from accurately measuring the other fundamental property of a protein—its mass—one wonders: what are we missing by not measuring the net charge of folded, solvated proteins? A few big questions immediately emerge in bioinorganic chemistry. When a single electron is transferred to a metalloprotein, does the net charge of the protein change by approximately one elementary unit of charge or does charge regulation dominate, that is, do the pKa values of most ionizable residues (or just a few residues) adjust in response to (or in concert with) electron transfer? Would the free energy of charge regulation (ΔΔGz) account for most of the outer sphere reorganization energy associated with electron transfer? Or would ΔΔGz contribute more to the redox potential? And what about metal binding itself? When an apo-metalloprotein, bearing minimal net negative charge (e.g., Z=−2.0) binds one or more metal cations, is the net charge abolished or inverted to positive? Or do metalloproteins regulate net charge when coordinating metal ions? The author's group has recently dusted off a relatively obscure tool—the “protein charge ladder”—and used it to begin to answer these basic questions.  相似文献   

11.
Interference with the alternative splicing of apoptotic factors offers an innovative and specific mechanism to target malignant cells. In this issue of Chemistry & Biology, Zhou et al. report on the regulation of the alternative splicing of Bcl-x pre-mRNA in response to emetine, a potent protein synthesis inhibitor, as well as define a major player in the signaling mechanism.  相似文献   

12.
The preparation of hairy core–shell nanoparticles including (crosslinked) micelles, unimolecular micelles such as star polymers with block structures in each arm and surface grafted nanoparticles such as inorganic particles via the RAFT process are discussed. The RAFT process is certainly a highly versatile process. However, it should not be forgotten that RAFT polymerization is a process, i.e., superimposed on a conventional free radical process. Furthermore, the livingness of the process is dependent on the accessibility of the RAFT group, which can be hampered in certain approaches such as star synthesis and surface grafting from nanoparticles. Nevertheless, the RAFT process is a versatile toolbox that offers good solutions to a range of problems in the preparation of hairy nanoparticles.

  相似文献   


13.
14.
15.
16.
Solar water splitting (SWS) has been researched for about five decades, but despite successes there has not been a big breakthrough advancement. While the three fundamental steps, light absorption, charge carrier separation and diffusion, and charge utilization at redox sites are given a great deal of attention either separately or simultaneously, practical considerations that can help to increase efficiency are rarely discussed or put into practice. Nevertheless, it is possible to increase the generation of solar hydrogen by making a few little but important adjustments. In this review, we talk about various methods for photocatalytic water splitting that have been documented in the literature and importance of the thin film approach to move closer to the large-scale photocatalytic hydrogen production. For instance, when comparing the film form of the identical catalyst to the particulate form, it was found that the solar hydrogen production increased by up to two orders of magnitude. The major topic of this review with thin-film forms is, discussion on several methods of increased hydrogen generation under direct solar and one-sun circumstances. The advantages and disadvantages of thin film and particle technologies are extensively discussed. In the current assessment, potential approaches and scalable success factors are also covered. As demonstrated by a film-based approach, the local charge utilization at a zero applied potential is an appealing characteristic for SWS. Furthermore, we compare the PEC-WS and SWS for solar hydrogen generation and discuss how far we are from producing solar hydrogen on an industrial scale. We believe that the currently employed variety of attempts may be condensed to fewer strategies such as film-based evaluation, which will create a path to address the SWS issue and achieve sustainable solar hydrogen generation.  相似文献   

17.
Quality assurance is one of the major challenges in analytical chemistry, whatever the scope of application. The quality of analytical standards is very seldom questioned; however, sometimes odd results are obtained, and all the other potential sources of discrepancies are eliminated. So, we investigated the reliability of three analytical standards and reagents implemented for radiochemical and chemical characterizations of nuclear waste. In particular, this work examined the purity of a source of tritiated dodecane, the trueness of a certified concentration value and the purity for a diethylenetriaminepentaacetic acid (DTPA) reagent and the trueness of a certified concentration value for a multi-anion standard used in an interlaboratory comparison exercise. It was shown that the source of tritiated dodecane contains 60 % of tritiated impurities. The trueness of the DTPA concentration certified by the supplier was questioned due to the presence of impurities in the solution. It was proven that the long-term stability of the multi-anion standard was not guaranteed for nitrite. The results clearly demonstrated that, despite the certificates delivered by the suppliers, caution has to be taken toward the reliability of the analytical standards and reagents.  相似文献   

18.
Radial flow chromatography can be a solution for scaling up a packed bed chromatographic process to larger processing volumes. In this study we compared axial and radial flow affinity chromatography both experimentally and theoretically. We used an axial flow column and a miniaturized radial flow column with a ratio of 1.8 between outer and inner surface area, both with a bed height of 5 cm. The columns were packed with affinity resin to adsorb BSA. The average velocity in the columns was set equal. No difference in performance between the two columns could be observed. To gain more insight into the design of a radial flow column, the velocity profile and resin distribution in the radial flow column were calculated. Using mathematical models we found that the breakthrough performance of radial flow chromatography is very similar to axial flow when the ratio between outer and inner radius of the radial flow column is around 2. When this ratio is increased, differences become more apparent, but remain small. However, the ratio does have a significant influence on the velocity profile inside the resin bed, which directly influences the pressure drop and potentially resin compression, especially at higher values for this ratio. The choice between axial and radial flow will be based on cost price, footprint and packing characteristics. For small-scale processes, axial flow chromatography is probably the best choice, for resin volumes of at least several tens of litres, radial flow chromatography may be preferable.  相似文献   

19.
Seizures and epilepsy are some of the most common serious neurological disorders, with approximately 80% of patients living in developing/underdeveloped countries. However, about one in three patients do not respond to currently available pharmacological treatments, indicating the need for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory system of the brain and has a central role in seizures and the screening of new ACD candidates. It has been demonstrated that the action of agents on endocannabinoid receptors modulates the balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an important source of plant oils that can be used for the synthesis of new fatty acid amides, which are compounds analogous to endocannabinoids. The synthesis of such compounds represents an important approach for the development of new anticonvulsant therapies.  相似文献   

20.
 This paper examines some problems of implementation of quality assurance (QA) principles in chemical measurement in the university academic environment. Being developed and introduced in practice by industrial and independent commercial laboratories, the 'quality lifestyle' has been largely ignored by the academic analytical community. The academic community is now faced with the fact that teaching, education and training of analytical QA and analytical quality management are no longer a matter of choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号