首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of our recent studies on the molecular fuzzy point group symmetry, we further probe into the more complicated planar one-dimensional fuzzy periodic molecules—straight chain conjugate polyene. Except for the fuzzy translation transformation, the space transformation of the fuzzy screw rotation and the glide plane will be referred to. In addition, other fuzzy point symmetry transformation lain in the space transformation is discussed. Usually there is a correlation between the fuzzy symmetry characterization caused by the transition of the point symmetry elements and by certain space symmetry transformation. For the molecular orbital, the irreducible representation component is analyzed besides the membership function of the fuzzy symmetry transformation. Also, we inquire into the relativity between some molecular property and the fuzzy symmetry characterization.  相似文献   

2.
直链共轭多烯的模糊ta/2对称性   总被引:1,自引:0,他引:1  
近年来关于分子模糊对称性的工作多属于模糊点对称性的研究.关于模糊空间对称性探讨较少.只曾对线状一维模糊周期分子进行过一些分析.本文在此基础上进一步对于较复杂的平面一维模糊周期分子——直链共轭多烯(简称为共轭多烯)分子进行了较仔细的探讨.除模糊平移变换外,这里还将涉及模糊的螺旋旋转和滑移反映等空间变换.此外,还讨论了存在其中的其他模糊点对称变换.对于点对称元素的变动导致的模糊对称性特征,往往和某种空间对称变换的模糊对称性特征相关.对于分子轨道,除模糊对称变换的隶属函数外,分析了所属不可约表示成分.对这些分子的某些性质和其模糊对称性特征之间的相关性进行探讨.  相似文献   

3.
Based on our study in relation to the fuzzy symmetry characterization and the application to linear molecule, the fuzzy symmetry of the planar molecules have been analyzed. The prototypical planer molecules we have chosen to study are the C2F3X (X = Cl, Br, and I) and three kinds of C2F2Cl2 isomers. These molecules relate to the fuzzy symmetry in connection with the D2h point group. As we known, the D2h point group includes an identity transformation and seven twofold symmetry transformations but without higher-fold ones. Meanwhile, it is related only to some one-dimensional irreducible representations, but there is not to multi-dimensional irreducible representation. In this paper, the fuzzy symmetries of these molecules and their molecular orbital(MO)s have been studied, such as the membership functions, the representation compositions, the fuzzy correlation diagrams and so on have been analyzed. These analysis methods can be used to analyze the molecular fuzzy symmetries of some other molecule systems, no difficulty.  相似文献   

4.
Based on our previous study on the elementary characterization of the fuzzy symmetry, we inquired the static state fuzzy symmetry of some molecules and their molecular orbitals (MO). Now we will analyze the fuzzy symmetry of some simple linear tri-atomic dynamic systems in connection with the reaction. Three related transformations will mainly be studied in detail. These three transformations are (1) the space inversion transformation about the mid-atom as the center, (2) the reaction reversal transformation in relation to the reaction B + AC→BA + C and (3) the joint transformation of the above two. We examined the variation for the internal configuration of these systems owing to the operation of above three transformations, and then establish methods to calculate the fuzzy symmetry characterization, such as the membership functions for the MOs of such linear tri-atomic dynamic systems in relation to these transformations. We examined the variation regularity in relation to the fuzzy symmetry characterization for the MOs of these systems along the intrinsic reaction coordinate (IRC) and dividing line. The variation regularity and the distribution for the fuzzy symmetry characterization in related internal configuration coordinate space are also analyzed. An IRC-scale is suggested for internal configuration coordinate space in this paper.  相似文献   

5.
聚炔、累积多烯与全碳环分子的模糊对称性   总被引:1,自引:0,他引:1  
近年来我们关于分子模糊对称性的工作多属于模糊点对称性的研究, 关于模糊空间对称性探讨较少. 聚炔作为线状一维模糊周期分子, 我们曾对其进行了初步分析. 虽然对于聚炔分子骨架的分析比较全面, 但由于繁冗的计算使我们对分子轨道(MO)模糊对称性的分析只限于少数典型分子. 本文将对不同的聚炔分子MO模糊对称性特征进行较为系统的分析. 结果表明包含不同碳原子数目的分子轨道模糊对称性参数值之间有一定相关性. 此外我们还对一些相关体系分子的MO进行分析, 累积多烯分子虽然并非线型分子, 但其π-MO相关的碳原子处于线性位置, 可依模糊一维周期的G11体系处理. 按Born-Karman近似, 即n个单元的一维周期对称群与Cn点群同构, 本文还分析了相关的全碳环分子的MO的对称性和模糊对称性. 努力寻求与一维周期性相关的模糊对称性规律性特征.  相似文献   

6.
Based on our previous study on the elementary characterization of fuzzy symmetry, we inquire into the fuzzy symmetries of some simple linear and plane molecules. These systems belong to point groups that include the identity and twofold symmetry elements, but not include higher multi-fold symmetry ones, and their molecular orbitals (MOs) only belong to one-dimension irreducible representations. In this paper, we take the azines as a typical model to examine the fuzzy symmetry in relation to the D6h point group. As this group includes multi-fold symmetry elements such as a sixfold rotation axis, some of the MOs may belong to two-dimensional irreducible representations. We inquire into the fuzzy symmetry of these molecules and their MOs in terms of membership functions, representation components and correlation diagrams. In addition to these neutral closed shell molecules, pyridine hydride radical, anion, and cation are also analyzed.  相似文献   

7.
In this paper, the fuzzy symmetry of some prototypical linear molecules has been analyzed. The results show that some molecular orbitals (MOs) are less symmetrical but some others are more symmetrical than the molecular skeleton, which the MOs correspond to. The membership functions of space inversion for MOs are closely related to the chemical characteristics of the MOs. Sometimes, although the symmetry of a molecular skeleton is not obvious, however that of some MO is quite obvious. The membership functions of the fuzzy inversion symmetry depend on the choice of the position of the center of inversion. As compared to those of diatomic molecules and linear tri-atomic molecules, the linear polyatomic molecules in which a distinctive fuzzy symmetry of space translation may exist, and thus a significant effect on their properties can be expected.  相似文献   

8.
赵学庄  许秀芳 《物理化学学报》2004,20(10):1175-1178
将模糊数学方法引入对分子对称点群的研究,建立描述具有不完整分子对称性的模糊点对称群(集合).建立具有模糊对称性分子轨道的模糊表示及其模糊特征标(模糊广义宇称).通过对典型的线状分子、平面分子以及非平面的立体分子等进行分析,展示了一个新的理论化学园地.初步探讨了具有模糊对称性的动态反应体系.从模糊对称性出发,探讨了分子轨道对称守恒原理的半定量特征.  相似文献   

9.
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non‐Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z‐component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half‐filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non‐Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

10.
The fuzzy symmetries of two kinds of linear polyacene molecules are probed into in the paper. In these molecules, any one of the benzene rings abreast connects at most other two rings in two ways: either its two opposite C–C bonds combine with two other rings, respectively, or its two meta-position C–C bonds connect two rings in cis- and trans-form, respectively. The former is called p-polyacenes (or straight polyacenes), and the latter is m-polyacenes (or kinked ones). It can be thought as the planar molecule with approximate one-dimensional space periodic transformation (parallel translation) symmetry, namely, group G12{{\rm G}_{1}^{2}} symmetry, when the number of its benzene ring is very large; on the other hand, it can be considered as the fuzzy group G12{{\rm G}_{1}^{2}} symmetry, if the benzene ring number is not large enough. The p-polyacene and m-polyacene with 20 benzene rings are analyzed as typical examples, and the energies of the π-molecular orbital (MO) and the fuzzy symmetry characters related to the space symmetry transformations are carefully examined. Moreover, the π-MOs of the p-polyacenes and m-polyacenes with different numbers of benzene ring are investigated to obtain the related rules.  相似文献   

11.
丙二烯分子的模糊对称性   总被引:1,自引:0,他引:1  
利用作者提出的探讨分子及其轨道模糊对称性的方法分析了丙二烯在内旋转过程中模糊对称性特征. 考虑到此过程中经历不同状态所属的对称点群, 即D2h、D2d与D2. 利用包含这些点群中所有元素的最小点群D4h进行分析. 将D4h中的元素分为四组: (i) G0——包含在D2点群中的元素, 也是所有上述点群中都存在的元素; (ii) G1——包含在D2h点群中, 但不包含在D2d点群中的元素; (iii) G2——包含在D2d点群中, 但不包含在D2h点群中的元素; (iv) G3——包含在D4h点群中, 但不包含在D2h与D2d点群中的元素. 分别分析在内旋转过程中各个分子轨道(MO)相应每一组元素的隶属函数的共性变化规律性.  相似文献   

12.
Symmetry is an extremely useful and powerful tool in computational chemistry, both for predicting the properties of molecules and for simplifying calculations. Although methods for determining the point groups of perfectly symmetric molecules are well‐known, finding the closest point group for a “nearly” symmetric molecule is far less studied, although it presents many useful applications. For this reason, we introduce Symmetrizer, an algorithm designed to determine a molecule's symmetry elements and closest matching point groups based on a user‐adjustable tolerance, and then to symmetrize that molecule to a given point group geometry. In contrast to conventional methods, Symmetrizer takes a bottom‐up approach to symmetry detection by locating all possible symmetry elements and uses this set to deduce the most probable point groups. We explain this approach in detail, and assess the flexibility, robustness, and efficiency of the algorithm with respect to various input parameters on several test molecules. We also demonstrate an application of Symmetrizer by interfacing it with the WebMO web‐based interface to computational chemistry packages as a showcase of its ease of integration. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
In relativistic quantum chemical calculation of molecules, where the spin-orbit interaction is included, the electron orbitals possess both the double point group symmetry and the time-reversal symmetry. If symmetry adapted functions are employed as the basis functions of electron orbitals, it would allow a significant reduction of the computational expense. The point group symmetry adapted functions can be obtained by the group projection operators via its actions on the atomic orbital functions. We have proposed an efficient and simple method to obtain all irreducible representation matrices, which are the basis of the group projection operators, of any finite double point group. Both double point group symmetry and time-reversal symmetry are automatically imposed on the representation matrices. This is achieved by the symmetrized random matrix (SRM) approach, where the SRM is constructed in the regular representation space of a finite group and the eigenfunctions of SRM provide all irreducible representation matrices of the given point group.  相似文献   

14.
一般来说,点群理论认为M(o)bius带环分子最高的对称性只能是C2.本文讨论了由18个苯环组成的环并苯的异构体分子,包括柱面的Hückel型分子(HC-[18])和扭转180°的M(o)bius带环分子(MC-[18]).结果表明除了点对称性外,M(o)bius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性,为此还引用了环面正交曲线坐标系.此外,还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集.根据TSR对称性的循环群特征,可以建立此类群的不可约表示及有关特征标.这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的,然而所含的相应的原子轨道对称性匹配的线性组合(SALC-AO)成分可以是多种的.  相似文献   

15.
一般来说, 点群理论认为Möbius带环分子最高的对称性只能是C2. 本文讨论了由18个苯环组成的环并苯的异构体分子, 包括柱面的Hückel型分子(HC-[18])和扭转180°的Möbius带环分子(MC-[18]). 结果表明除了点对称性外, Möbius带环分子还存在一种可称为环面螺旋旋转(TSR)变换的对称性, 为此还引用了环面正交曲线坐标系. 此外, 还讨论了这些分子关于TSR对称性匹配的原子集和原子轨道(AO)集. 根据TSR对称性的循环群特征, 可以建立此类群的不可约表示及有关特征标. 这类分子的分子轨道(MO)关于TSR群的不可约表示是纯的, 然而所含的相应的原子轨道对称性匹配的线性组合(SALC-AO)成分可以是多种的.  相似文献   

16.
Two types of symmetry groups are commonly used in chemistry. Point groups are used for molecules, whereas, for solids, the 230 space groups are used. Neither of these types of symmetry groups are suitable for representing unit cells in solids, the symmetry of which is intermediate between that of point groups and space groups. To represent the symmetry of unit cells in an infinite lattice, a third type of symmetry group must be used. An algorithmic method of generating these symmetry groups is described. It can be demonstrated that these groups are valid by use of conventional symmetry group theory. This technique has been applied to the two-dimensional graphite lattice. Because the new method generates symmetry tables using only the topology of the system, the symmetry properties of graphs can also readily be derived. Last, the relationship between these groups and the other two types of groups is identified. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 168–180, 1998  相似文献   

17.
The fuzzy symmetry characteristics for the internal-rotation of propadine were analyzed using the fuzzy symmetry theory for molecule and molecular orbital (MO). In the process of rotation, three different symmetry point groups D2h, D2d, and D2 were considered. Using the D4h point group, which is the minimal point group including all symmetry elements of D2h, D2d, and D2, we can analyze the fuzzy symmetry for this process. The elements included in D4h point group can be classified to four subsets: (i) G0—it includes all the elements in D2 point group, also belongs to all the above three point groups of D2h, D2d, and D2; (ii) G1—it includes the elements in D2h point group, but not in D2d point group; (iii) G2—it includes the elements in D2d point group, but not in D2h point group; (iv) G3—it includes the elements in D4h point group, but not in D2h or D2d point group. On the basis of the above four subsets, we analyzed the membership functions and the regularity of variation in MOs for the internal-rotation of propadine.  相似文献   

18.
The symmetry orbital tensor (SOT) method, which makes full use of symmetries in all point groups and can be applied to the self-consistent field (SCF) and post-SCF calculations, is introduced. The principal feature of this method is the definition of the symmetry orbitals (SOs). Any element in a molecular point group will transform one SO to another equivalent SO or simply to itself, and no mixture among SOs exists. Thus, although the SOs for non-Abelian point groups may adapt to reducible representations, their transformation properties are much simpler than in conventional treatments. This article also presents a general scheme to generate SOs for all point groups. The direct products of N SOs form an Nth-rank SOT group, and each matrix element between SOTs is the product of a physical factor and a geometric factor. Compared with the canonical molecular orbitals, the use of SOs can noticeably reduce the computation efforts by decreasing the number of integrals needed in the SCF calculations or the number of configurations needed in the configuration interaction (CI) calculations. The SOT-SCF and SOT-CI approaches are formulated and a preliminary SOT-SCF program is written. Pilot calculations demonstrate the value of the SOT approach, at least at the closed-shell Hartree–Fock level. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 305–321, 1999  相似文献   

19.
Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard‐Jones clusters. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The symmetry of molecules and transition states of elementary reactions is an essential property with important implications for computational chemistry. The automated identification of symmetry by computers is a very useful tool for many applications, but often relies on the availability of three‐dimensional coordinates of the atoms in the molecule and hence becomes less useful when these coordinates are a priori unavailable. This article presents a new algorithm that identifies symmetry of molecules and transition states based on an augmented graph representation of the corresponding structures, in which both topology and the presence of stereocenters are accounted for. The automorphism group order of the graph associated with the molecule or transition state is used as a starting point. A novel concept of label‐stereoisomers, that is, stereoisomers that arise after labeling homomorph substituents in the original molecule so that they become distinguishable, is introduced and used to obtain the symmetry number. The algorithm is characterized by its generic nature and avoids the use of heuristic rules that would limit the applicability. The calculated symmetry numbers are in agreement with expected values for a large and diverse set of structures, ranging from asymmetric, small molecules such as fluorochlorobromomethane to highly symmetric structures found in drug discovery assays. The new algorithm opens up new possibilities for the fast screening of the degree of symmetry of large sets of molecules. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号