首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic hydrogels (ferrogels) based on poly(vinyl alcohol) (PVA) and poly(hydroxyethyl methacrylate) (PHEMA) with magnetite (Fe3O4) nanoparticles were prepared. PVA ferrogels were synthesised by submitting the aqueous solution of polymer and Fe3O4 to freezing-thawing (F-T) cycles yielding a physical gel. Different samples were prepared by varying (i) the concentration of PVA, (ii) the concentration of magnetite and (iii) the number of F-T cycles applied. PHEMA ferrogels were prepared by a crosslinking polymerization reaction in the presence of magnetite yielding chemical gels. Different samples were prepared by varying (i) the concentration of HEMA, (ii) the concentration of EGDMA and (iii) the concentration of magnetite nanoparticles. All ferrogel samples were first dried before been analysed in a thermogravimetric analyzer. The resulting thermograms showed that the concentration of magnetite nanoparticles does affect the thermal stability of either ferrogels system, a general improvement in comparison with PVA and PHEMA hydrogels, respectively, being observed. The apparent activation energy (Ea) of the thermal degradation for PVA ferrogels was evaluated and calculated applying the Flynn-Wall and the Kissinger methods. Values of apparent Ea increased with the content of Fe3O4 in the ferrogel sample.  相似文献   

2.
The processes of swelling of poly(acrylic acid) ferrogels prepared via radical polymerization in an aqueous suspension of ferric oxide nanoparticles with the weighted average size of 23.5 nm obtained by laser evaporation method and stabilized by chitosan (М = 5.3 × 105 and degree of deacetylation of 62%) are studied. The swelling of washed ferrogels depends on the content of chitosan and decreases abruptly at a polymer concentration exceeding 1 g/L. At a chitosan concentration above 1 g/L, the chemical network of poly(acrylic acid) is formed on the fluctuation network of chitosan in solution. As pH increases, these ferrogels are contracted owing to formation of an interpolymer complex of chitosan with poly(acrylic acid) subchains.  相似文献   

3.
Superparamagnetic magnetite nanoparticles were synthesized induced by chitosan hydrogel under ambient conditions via iron ions assembly, and the inducing effect of chitosan hydrogel was discussed. Results of X‐ray diffraction and transmission electron microscopy indicate that the nanoparticles were inverse cubic spinel structure magnetite with diameter about 16 nm, and the superparamagnetic nanoparticles with narrow size distribution dispersed uniformly in chitosan. The magnetization measurements indicated that the nanoparticles showed the typical superparamagnetic behavior. The crystallinity, morphology, and magnetic properties of magnetite nanoparticles were remarkably influenced by the pH values of iron ion solutions. The interaction between magnetite and chitosan was illustrated by FT‐IR and thermogravimetric analysis, which concluded that the magnetite nanoparticles were coated by a chitosan layer via the amino groups of chitosan. The chitosan hydrogel assisted in the synthesis of superparamagnetic magnetite nanoparticles through chelation by amino groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes a method for fabricating spherical submicron-sized silica particles that contained magnetite nanoparticles (magnetite/silica composite particles). The magnetite nanoparticles with a size of ca. 10 nm were prepared according to the Massart method, and were surface-modified with carboxyethylsilanetriol. The fabrication of magnetite/silica composite particles was performed in water/ethanol solution of tetraethoxyorthosilicate with ammonia catalyst in the presence of the surface-modified magnetite nanoparticles. The magnetite/silica composite particles with a size of ca. 100 nm were successfully prepared at 0.05 M TEOS, 15 M water, and 0.8 M ammonia with injection of the magnetite nanoparticle colloid at 2 min after the initiation of hydrolysis reaction of TEOS. Magnetite concentration in the composite particles could be raised to 17.3 wt.% by adjustment of the injected amount of the magnetite colloid, which brought about the saturation magnetization of 7.5 emu/g for the magnetite/silica composite particles.  相似文献   

5.
Chitosan‐iron ions complex (CS‐Fe(II,III) complex) was used as precursor to synthesize magnetite nanocrystals and the mechanism was discussed. The magnetite nanocrystals have diameters of about 10 nm and clusters were formed due to slight aggregation of several magnetite nanocrystals. FT‐IR and X‐ray photoelectron spectrometer (XPS) investigations indicated that the Fe(II) and Fe(III) were chelated by ? NH2 and ? OH groups of chitosan in CS‐Fe(II,III) complex, and the molar ratio of ? NH2/Fe(II,III) was approximately 2. This chelation effect destroyed the hydrogen bonds of chitosan. In the following alkali treatment process, the chelated Fe(II) and Fe(III) provided nucleation site and formed the magnetite nanocrystals. After alkali treatment, the chelation effect between iron ions and ? NH2 groups disappeared and some kind of weak interaction formed between magnetite and ? NH2 groups. Moreover, the ? OH groups of chitosan have an interaction with the synthesized magnetite nanocrystals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
One step solvothermal route has been developed to prepare a well dispersed magnetically separable palladium–graphene nanocomposite, which can act as a unique catalyst against hydrogenation due to the uniform decoration of palladium nanoparticles throughout the surface of the magnetite–graphene nanocomposite and hence can be reused for several times. In addition to catalytic activity, palladium nanoparticles also facilitate the formation and homogeneous distribution of magnetite (Fe3O4) nanoparticles onto the graphene surfaces or else an agglomerated product has been obtained after the solvothermal reduction of graphene oxide in presence of Fe3+ alone.  相似文献   

7.
Magnetic-field-sensitive gels, called ferrogels, have been prepared by introducing monodomain, magnetite particles of colloidal size into chemically crosslinked poly(vinyl alcohol) hydrogels. The influence of a non-uniform external magnetic field on the shape of gel tubes and the possibility to induce elongation and contraction by means of a magnetic field gradient produced by an electromagnet have been demonstrated. It was shown that both the concentration of magnetite particles and the crosslinking density of the ferrogels play an essential role in the magneto-elastic behaviour.  相似文献   

8.
The paramagnetic sensor method was used to study local magnetic fields in a magnetite aqueous suspension. The sensor was 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl, a stable nitroxide radical. The lines in the EPR spectrum of the sensor were demonstrated to be broadened due to the dipole-dipole interaction with magnetite nanoparticles. It was established that no spin exchange occurred between sensor molecules and magnetite nanoparticles. The g-factor was found to decrease with the concentration of magnetite nanoparticles in the suspension. The mean strengths of the local magnetic fields calculated from changes in the EPR spectrum of the sensor proved to be substantially lower than the values determined from magnetic measurements. This difference was accounted for by the formation of linear aggregates of magnetite nanoparticles under the action of a magnetic field.  相似文献   

9.
We investigate the effect of digestion time and alkali addition rate on the size and magnetic properties of precipitated magnetite nanoparticles. It is observed that the time required to complete the growth process for magnetite nanocrystals is very short (approximately 300 s), compared to long digestion times (20-190 min) required for MnO and CdSe nanocrystals. The rapid growth of magnetite nanoparticles suggests that Oswald ripening is insignificant during the precipitation stage, due to the low solubility of the oxides and the domination of a solid-state reaction where high electron mobility between Fe2+ and Fe3+ ions drives a local cubic close-packed ordering. During the growth stage (0-300 s), the increase in the particle size is nominal (6.7-8.2 nm). The effect of alkali addition rate on particle size reveals that the nanocrystal size decreases with increasing alkali addition rate. The particle size decreases from 11 to 6.8 nm as the alkali addition rate is increased from 1 to 80 mL/s. During the size decrease, the lattice parameter decreases from 0.838 to 0.835 nm, which is attributed to an increase in the amount of Fe3+ atoms at the surface due to oxidation. As the alkali addition rate increases, the solution reaches supersaturation state rapidly leading to the formation of large number of initial nuclei at the nucleation stage, resulting in large number of particles with smaller size. When alkali addition rate is increased from 1 to 80 mL/s, the saturation magnetization of the particles decreases from 60 to 46 emu/g due to the reduced particle size.  相似文献   

10.
Materials producing strain in a magnetic field are known as magnetoelastic or magnetostrictive materials. A new type of material that is able to produce giant strain in a nonhomogeneous magnetic field has been developed. In these magnetic-field-sensitive gels (ferrogels) fine colloidal particles having superparamagnetic behavior are incorporated into a highly swollen elastic polymer network. Magnetic properties of ferrogels have been investigated using electron microscopy, static magnetization measurements, and M?ssbauer spectroscopy. Analysis of the data yielded information on the superparamagnetic behavior of ferrogels and made it possible to estimate the size distribution of the magnetic cores of magnetite particles made by chemical precipitation and built into a chemically cross-linked polyvinyl alcohol matrix. The results are interpreted on the basis of a core-shell model. Copyright 2000 Academic Press.  相似文献   

11.
纳米四氧化三铁(Fe3O4)的制备和形貌   总被引:15,自引:0,他引:15  
纳米Fe3O4因其特殊的理化性质和在生物医学领域潜在的应用价值而得到广泛研究。本文综述了纳米Fe3O4的制备方法,包括直流电弧等离子体法、热分解方法、沉淀法、水热法、电化学法、微乳液法、溶胶-凝胶法、有机物模板法、回流法等,结合作者在Fe3O4纳米粒子制备方面的最新工作,介绍了Fe3O4纳米粒子的新颖形貌。对纳米级Fe3O4制备研究的发展趋势进行了展望。  相似文献   

12.
Magnetite nanoparticles have been successfully synthesized in liquid polyols at elevated temperature. Polyol solvent plays a crucial role in determining the morphology and colloidal stability of the resulting particles. The structure and morphology of the nanoparticles were studied using XRD, TEM, SAED, TGA and FTIR. The magnetic properties of the samples were measured using physical properties measurement system (PPMS) of Quantum Design. The results show that as-prepared magnetite nanoparticles are monodisperse, highly crystalline and superparamagnetic at room temperature. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol ligands in situ. This approach provides a facile route to prepare magnetite nanoparticles.  相似文献   

13.
The influence of magnetite (Fe(3)O(4)) nanoparticles on the rheological properties of kappa-, iota- and lambda-carrageenan gels has been investigated. Small amplitude oscillatory shear measurements were performed to study the effect of the presence of Fe(3)O(4) nanoparticles with particle sizes of ca. 10 nm on the gel properties, as a function of carrageenan type, carrageenan concentration and magnetite load. The formation of Fe(3)O(4) nanoparticles on the presence of biopolymer was observed to promote the gelation process and lead to stronger gels as indicated by an increase in the gel viscoelastic moduli and of the gelation temperature. This effect was more marked for kappa-carrageenan than for iota- and lambda-carrageenan and has been proposed to depend not only on Fe(3)O(4) concentration but also on the concentration of potassium ions. A mechanism based on the combined effect of Fe(3)O(4) nanoparticles and potassium ions was suggested, involving the adsorption of potassium ions on the negatively charged surface of the Fe(3)O(4) nanoparticles, thus leading to an increase of the potassium ion concentration within the "carrageenan cages" containing the magnetite. This would, therefore, promote more extensive biopolymer helical aggregation, thus resulting in the formation of a stronger kappa-carrageenan gel in the presence of Fe(3)O(4), as observed. Since iota- and lambda-carrageenan gels are known to be less sensitive to potassium ions concentration, the effect of precipitating Fe(3)O(4) within these biopolymers is reduced.  相似文献   

14.
The equilibrium swelling of magnetoactive ferrogels based on the copolymer of acrylamide with 10% potassium acrylate in water is studied. The gels are filled with strontium ferrite and/or magnetite taken in amounts of 20, 40, 60, and 80 parts per 100 parts of the polymer by weight. In the absence of a magnetic field, as the content of the filler is increased, the degree of swelling tends to increase for the gels containing strontium ferrite and to decrease for the magnetite-containing gels. In the structure of hydrogels, strontium ferrite particles possessing a permanent magnetic moment form a microscopic network from chain aggregates, while the particles of magnetite, a magnetically soft material, give rise to disordered aggregates. The enthalpy of hydration of ferrogel polymeric matrices weakly depends on the nature and amount of the introduced filler: The interaction parameter takes small positive values in the range 0.10–0.18. In a homogeneous magnetic field of 365 mT, the degree of swelling decreases at a small filler content for both types of ferrogels. This effect is accompanied by elongation of a ferrogel sample along the field direction and contraction in the transverse direction. With an increase in the filler content, the inversion of both effects occurs. The applicability of concepts about the homogeneously magnetizable continuous medium to the process of magnetostriction of ferrogels is analyzed.  相似文献   

15.
In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems.  相似文献   

16.
A novel and simple method for size control of self-assembled nanoparticles is suggested in this paper. Polymeric nanoparticles were prepared from amphiphilic chitosan derivatives fluorescein isothiocyanate (FITC)-conjugated glycol chitosans (FGCs). The attachment of hydrophobic FITC onto hydrophilic glycol chitosan induced the amphiphilic conjugate to form self-assembled nanoparticles in aqueous media, depending on degree of substitution. The size of self-assembled nanoparticles was controlled by a novel emulsion/solvent evaporation method. Adding a small amount of an immiscible solvent with water (chloroform) to FGC nanoparticle suspensions in aqueous media followed by ultrasonification and solvent evaporation led to partial dissociation and subsequent reformation of nanoparticles. The evaporation of chloroform facilitated the hydrophobic association, which resulted in more dense and hardened hydrophobic cores. The size of nanoparticles was closely related with the FGC concentration in the emulsion. The mean diameters of self-assembled nanoparticles were 150–500 nm at the FGC concentrations of 0.3–2.5 mg/ml. Higher FGC concentration resulted in larger particles. The polydispersity factors (μ 2/Γ 2) of the reformed nanoparticles were fairly low (0.001–0.094), indicating narrow size distribution. The FGC nanoparticles were stable in phosphate-buffered saline at 37°C up to 20 days. Lactose was a good excipient for maintaining the structural integrity of nanoparticles during freeze-drying. Without lactose, the freeze-dried nanoparticles were not homogeneously redispersed in aqueous media. However, the freeze-dried nanoparticles with lactose were spontaneously redispersed in aqueous milieu with their own sizes.  相似文献   

17.
A novel universal approach to cross-linking of protein macromolecules on the surface of magnetite nanoparticles has been developed. The approach is based on protein liability to free-radical modification, leading to the formation of intermolecular covalent cross-links. Free radicals are locally generated on the surface of nanoparticles. Stable coatings of serum albumin 3 nm thick are formed on the surface of magnetite nanoparticles. Using a set of physicochemical methods, it has been proven that stable coatings composed of protein macromolecules are formed around individual nanoparticles. The presence of reactive groups in the protein structure makes it possible to perform subsequent modification of the surface layers-in particular, to graft nonprotein drugs. The approach developed can be used to create superfine systems with desired surface properties for targeted delivery of drugs and biologically active substances.  相似文献   

18.
Iron oxide nanoparticles are being viewed with interest owing to the great potential they have in the biomedical applications like MRI contrast enhancement, targeted drug delivery, hyperthermia and recently in magnetic separation of cancer cells from the body. Templated synthesis has been considered ideal for synthesis of iron oxide nanoparticles as particles are attracted magnetically, in addition to usual flocculation through van der Waals attraction. Biological templates are attractive owing to their biocompatibility and the attractive porosity and surface chemistry that nature provides. Polysaccharides like chitosan and alginate have been employed in the synthesis of a polyion complex, which provided the active-binding sites for iron(II) ions in solution to bind. The natural organization of chitosan and alginate into a porous film has been exploited to synthesize spherical iron oxide nanoparticles through careful calcination of the iron(II) conjugate film. Our experiments indicate that the formed nanoparticles are highly crystalline, confirm to the hematite structure and have a superparamagnetic response with a low coercivity of 116 Oe. Particles thus synthesized were highly monodisperse with hydrodynamic diameter of 1.8 nm. The symmetric porosity of the film translates into the synthesis of well-aligned nanoparticles of iron oxide. Compared to synthesis in solution, the film-assisted synthesis offered a greater degree of control over the particle size distribution pattern, with the chitosan–alginate template providing the needed spatial separation to prevent the aggregation due to magnetostatic coupling. Such hematite nanoparticles can either be used directly or converted to paramagnetic magnetite by reduction. Zeta potential measurements indicate highly stable nanoparticles, which can therefore be conjugated to cationic liposomes carrying drugs and magnetically guided to target sites.  相似文献   

19.
We consider the effect of applied magnetic fields on the diffusion of single dextran molecules labeled with fluorescein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles in a poly(methacrylic acid) hydrogel] using fluorescence correlation spectroscopy. We show that the mesh size of the ferrogel is controlled by the applied magnetic field, B, and scales as exp(-(4)√ξ(3)B(2)/2μ(0)k(B)T), where ξ is a correlation length, μ(0) the magnetic constant, k(B) the Boltzmann constant, and T is the absolute temperature. The diffusion coefficient of the dextran can be modeled with a simple Stokes-Einstein law, containing the same scaling behavior with magnetic field as the swelling of the hydrogel. Furthermore, the magnetic field-dependent release of dextran from the hydrogel is also controlled by the same relationship. The samples were characterized by small angle x-ray scattering (SAXS) and magnetometry experiments. Magnetic hysteresis loops from these ferrogels and zero field cooled∕field cooled measurements reveal single domain ferromagnetic behavior at room temperature with a similar coercivity for both as-prepared and fully swollen ferrogels, and for increasing magnetic nanoparticle concentration. SAXS experiments, such as the hysteresis loops, show that magnetite does not aggregate in these gels.  相似文献   

20.
IntroductionMagnetite (Fe3O4) is widespread in the environ-ment although it is thermodynamically unstable with re-spect to hematite(α-Fe2O3) in the presence of oxygen.It has been widely used for targeted delivery ofdrugs[1], in MRI reagents[2], hyperther…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号