首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased.  相似文献   

2.
Stable isotope‐coding coupled with mass spectrometry is a popular method for quantitative proteomics and peptide quantification. However, the efficiency of the derivatization reaction at a particular functional group, especially in complex structures, can affect accuracy. Here, we present a dual functional‐group derivatization of bioactive peptides followed by micro liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). By separating the sensitivity‐enhancement and isotope‐coding derivatization reactions, suitable chemistries can be chosen. The peptide amino groups were reductively alkylated with acetaldehyde or acetaldehyde‐d4 to afford N‐alkylated products with different masses. This process is simple, quick and high‐yield, and accurate comparative analysis can be achieved for the mass‐differentiated peptides. Then, the carboxyl groups were derivatized with 1‐(2‐pyrimidinyl)piperazine to increase MS/MS sensitivity. Angiotensins I–IV, bradykinin and neurotensin were analyzed after online solid phase extraction by micro LC‐MS/MS. In all instances, a greater than 17‐fold increase in sensitivity was achieved, compared with the analyses of the underivatized peptides. Furthermore, the values obtained from the present method were in agreement with the result from isotope dilution quantification using isotopically labeled angiotensin I [Asp‐Arg‐(Val‐d8)‐Tyr‐Ile‐His‐Pro‐(Phe‐d8)‐His‐Leu]. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A strategy is presented for comparative analysis of glycoproteins in which the variation of protein concentration, variation of glycosylation site occupancy and variation of glycoform profile can be determined. A comparative study was performed using stable isotope labeling of glycopeptides and peptides by formaldehyde-H2 and formaldehyde-D2 and analysis by ESI-MS analysis. The relative intensity of the nonglycosylated peptide provided information about protein concentration variation. Variation of the glycoform profile was obtained by comparing the glycoform profile of d0- and d4-dimethyl labeled glycopeptides. By knowing the variation of protein concentration and the variation of glycoform profile, the variation of glycosylation site occupancy could be calculated. The utility of the proposed strategy was demonstrated with ribonuclease B with different protein concentrations, different levels of glycosylation site occupancy and different glycoform profiles.  相似文献   

4.
Zhang Y  Lai C  Su R  Zhang M  Xiong Y  Qing H  Deng Y 《The Analyst》2012,137(11):2699-2705
Cry1Ab is one of the most common Bacillus thuringiensis (Bt) proteins in genetically modified crops, which exhibits strong resistance against insect pests. In the present study, a sensitive and precise liquid chromatography stable isotope dilution multiple reaction monitoring tandem mass spectrometry (LC-SID-MRM-MS) assay was developed and validated to quantify the amount of Cry1Ab expression in transgenic maize leaves. The measurement of protein was converted to measurement of unique peptides to Cry1Ab protein. Two peptides unique to Cry1Ab were synthesized and labeled in H(2)(18)O to generate (18)O stable isotope peptides as internal standards. The validated method obtained superior specificity and good linearity. And the inter- and intra-day precision and accuracy for all samples were satisfactory. The results demonstrated Cry1Ab protein was 31.7 ± 4.1 μg g(-1) dry weight in Bt-176 transgenic maize leaves. It proved that the novel LC-SID-MRM-MS method was sensitive and selective to quantify Cry1Ab in the crude extract without time-consuming pre-separation or purification procedures.  相似文献   

5.
An algorithm is presented for the generation of a reliable peptide component peak table from liquid chromatography-mass spectrometry (LC-MS) and subsequent quantitative analysis of stable isotope coded peptide samples. The method uses chemical noise filtering, charge state fitting, and deisotoping toward improved analysis of complex peptide samples. Overlapping peptide signals in mass spectra were deconvoluted by correlation with modeled peptide isotopic peak profiles. Isotopic peak profiles for peptides were generated in silico from a protein database producing reference model distributions. Doublets of heavy and light labeled peak clusters were identified and compared to provide differential quantification of pairs of stable isotope coded peptides. Algorithms were evaluated using peptides from digests of a single protein and a seven-protein mixture that had been differentially coded with stable isotope labeling agents and mixed in known ratios. The experimental results correlated well with known mixing ratios.  相似文献   

6.
A novel isotope labeling reagent d0-/d6-2, 4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP) has been developed for derivatization toward the carboxyl group based on carbodiimide chemistry for mass spectrometry (MS) analysis. The strengths of this derivatization strategy involve fast labeling (15 s), low chemical background and general access to most carboxylic analytes. This has been demonstrated using a series of compounds containing carboxylic acids, including peptides and proteins. To enhance the MS response of the derivatized analytes, the design of DMPP has been based on integration of the theoretical consideration of high gas-phase hydrogenation capacity and hydrophobicity. In addition, the high abundance product ions at m/z 225 and m/z 231 from d0-/d6-DMPP labeled carboxylic acids indicate high efficiency of the gas-phase cleavage induced by the labeling reagent. Quantitative determination of these ions can also be used in single reaction monitoring to achieve extremely high sensitivity toward the target analytes. This has subsequently been used to determine trace free fatty acids in human urine. Furthermore, the DMPP labeled peptides also provide additional sequence information in MALDI–MS/MS because of the formation of sequence-related isotope fragment ions. This DMPP-oriented labeling technique is expected to be a promising tool for the MS detection of many varieties of compounds containing carboxyl groups.  相似文献   

7.
This paper describes a procedure for quantitative proteomics that selects peptides containing both cysteine and histidine residues from tryptic digests of cell lysates. Cysteine-containing peptides were selected first by covalent chromatography using thiol disulfide exchange. Following the release of cysteine-containing peptides from the covalent chromatography column with reductive cleavage, histidine-containing peptides were captured by passage through an immobilized metal affinity chromatography column loaded with copper. Quantification was achieved in a four-step process involving (i) differential labeling of control and experimental samples with isotopically differing forms of succinic anhydride, (ii) mixing the two globally labeled samples, (iii) fractionating the labeled peptides by reversed-phase liquid chromatography, and (iv) determining the isotope ratio in individual peptides by mass spectrometry. The results of these studies indicate that by selecting peptides containing both cysteine and histidine, the complexity of protein digests could be substantially reduced. Up-regulated proteins from plasmid bearing Escherichia coli that had been induced with isopropyl beta-thiogalacto-pyranoside were identified and quantified by the global internal standard technology (GIST) described above. Database searches were greatly simplified because the number of possible peptide candidates was reduced more than 95%.  相似文献   

8.
Covalent modification of peptides and proteins with compounds containing stable isotopes (isotope tagging) has become an essential tool to detect dynamic changes in the proteome following external or internal influence; however, using terminal amino groups for global isotope labelling of tryptic peptides is challenged by the similar reactivity of the amino groups of lysine residues. We describe a new quantitative method based on selective tagging of the terminal amino groups of tryptic peptides with pentafluorophenyl esters containing stable isotopes. The labelled peptides were resolved by two-dimensional nanoflow liquid chromatography on weak anion-exchange and reversed-phase columns and then identified and quantified by tandem mass spectrometry. The method was applied to compare the proteomes of plasma membranes from proliferating and differentiated human colorectal adenocarcinoma (Caco-2) cells and endosomes purified from the livers of rats stimulated with insulin and epidermal growth factor. The comparison of the results obtained by isotope tagging and biochemical assays demonstrate that global isotope tagging with pentafluorophenyl esters allows accurate quantification of complex protein samples.  相似文献   

9.
Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related diseases.  相似文献   

10.
建立了定量肽段串联体蛋白质(concatamers of Q peptides, QconCATs)结合18O同位素标记-多反应监测质谱的蛋白质绝对定量新方法。首先对QconCAT重组蛋白质进行了纯度表征,十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)表征结果表明重组蛋白质的纯度在99%以上,相对分子质量约为63.4 kDa。对QconCAT重组蛋白质酶切后的肽段混合物进行质谱分析,并经pFind和pLabel软件处理,验证了目标肽段。还考察了QconCAT重组蛋白质的酶切效率和18O标记效率,并对QconCAT蛋白质结合18O标记-同位素稀释-多反应监测质谱方法进行了评价。实验结果表明,采用该方法对腾冲嗜热厌氧菌(Thermoanaerobacter tengcongensis, TTE)中选定蛋白质的肽段进行绝对含量测定时,相对标准偏差小于20%,准确度较高,说明该方法可用于复杂生物样本中蛋白质的绝对定量。更重要的是所建方法不仅解决了细胞培养氨基酸稳定同位素标记(SILAC)技术的重标试剂价格昂贵的问题,也为定量蛋白质组学提供了一种新的方法。  相似文献   

11.
A lecture demonstration of primary kinetic isotope effect using the bromination of acetone and acetone-d6 is described.  相似文献   

12.
Mass spectrometry (MS)‐based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS‐based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike‐in amount is known. However, a manual calculation of the ratios can be time‐consuming and labor‐intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix‐assisted laser desorption/ionization time‐of‐flight tandem mass spectrometry (LC/MALDI TOF/TOF)‐based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age‐matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
As an extension of our previous work, here a strategy was demonstrated for protein identification and quantification analyses utilizing a combination of stable isotope chemical labeling with subsequent denaturation, enzymatic digestion and matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Using [d0]‐ and [d6]‐4,6‐dimethoxy‐2‐(methylsulfonyl)pyrimidine ([d0]‐/[d6]‐DMMSP), stable isotopic labels were incorporated before digestion. The comparative samples were combined before labeling after digestion, thus biases resulting from differences in sample digestion were avoided and the higher accuracy of quantification could be attained. The labeling was spatial‐selective to particular residues of cysteine, lysine, and tyrosine before denaturation, which could lead to a better universality of the strategy for cysteine‐free proteins. In addition, some lysine residues were blocked after labeling, the partly destroyed recognition sites could simplify the trypsin hydrolysates and hence facilitate the MS complexity. Together, our one‐step labeling strategy combined several desirable properties such as spatial‐selective labeling, reliability of quantitative results, simplification of analysis of complex systems and direct analysis with minimum sample handling. Our results demonstrate the usefulness of the method for analyzing lysozyme in egg white. The method was expected to provide a new powerful tool for comparative proteome research.  相似文献   

14.
Stable isotope labels are routinely introduced into proteomes for quantification purposes. Full labeling of cells in varying biological states, followed by sample mixing, fractionation and intensive data acquisition, is used to obtain accurate large‐scale quantification of total protein levels. However, biological processes often affect only a small group of proteins for a short time, resulting in changes that are difficult to detect against the total proteome background. An alternative approach could be the targeted analysis of the proteins synthesized in response to a given biological stimulus. Such proteins can be pulse‐labeled with a stable isotope by metabolic incorporation of ‘heavy’ amino acids. In this study we investigated the specific detection and identification of labeled proteins using acquisition methods based on Precursor Ion Scans (PIS) on a triple‐quadrupole ion trap mass spectrometer. PIS‐based methods were set to detect unique immonium ions originating from labeled peptides. Different labels and methods were tested in standard mixtures to optimize performance. We showed that, in comparison with an untargeted analysis on the same instrument, the approach allowed a several‐fold increase in the specificity of detection of labeled proteins over unlabeled ones. The technique was applied to the identification of proteins secreted by human cells into growth media containing bovine serum proteins, allowing the preferential detection of labeled cellular proteins over unlabeled bovine ones. However, compared with untargeted acquisitions on two different instruments, the PIS‐based strategy showed some limitations in sensitivity. We discuss possible perspectives of the technique. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Acetonitrile as a solvent used in liquid chromatography/mass spectrometry (LC/MS) of peptides and proteins is a relatively toxic solvent (LD50 oral; rat; 2,460 mg/kg) compared to alternatives like methanol (LD50 oral; rat; 5,628 mg/kg) and acetone (LD50 oral; rat; 5,800 mg/kg). Strategies to minimize its consumption in LC are either to reduce the inner diameter of the column or replace acetonitrile with a suitable alternative. Methanol is often recommended to replace acetonitrile in peptide analysis. In this study however, the main focus lies on another alternative solvent for LC/MS of peptides; acetone. A number of model proteins were tryptically digested and the peptide solutions were analyzed on a linear trap quadrupole (LTQ) mass spectrometer. The performances of acetonitrile, methanol and acetone were compared according to the quality of the chromatograms obtained and identification of the peptides using the BioWorks? software developed by Thermo Scientific. In accordance to the elutropic series, acetone was found to significantly reduce the retention times of peptides separated by C18 column material with regard to acetonitrile while methanol led to increased retention times. Acetone was the superior solvent to methanol for most of the tested model proteins reaching similar sequence coverage and numbers of identified peptides as acetonitrile. We therefore propose acetone as an alternative to acetonitrile in LC/MS of peptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Stable heavy-isotope labeling is commonly used in quantitative proteomics. Several common techniques incorporate deuterium (2H) as the heavy isotopic label using reductive amination with formaldehyde. Compared with alternatives, dimethyl labeling reagents are inexpensive and the labeling chemistry is simple and rapid. However, the substitution of hydrogen by deuterium can introduce subtle changes in peptides’ polarities, leading to a shift in chromatographic retention times between deuterated and nondeuterated peptides that can lead to quantification deviations. Capillary zone electrophoresis has emerged as a complementary separation for ESI–MS-based proteomics, including targeted and quantitative approaches. The extent to which the deuterium isotope effect impacts CZE-based proteomics, which separates peptides based on their S/N ratios, has not been investigated. To address this issue, CZE was used to analyze dimethyl labeled E. coli tryptic digests in 100 min single-shot analyses. The median migration time shift was 0.1 s for light versus heavy labeled peptides, which is 2.5% of the peak width. For comparison, nUHPLC–ESI–MS/MS was used to analyze the same sample. In UPLC, deuterated peptides tended to elute earlier than nondeuterated peptides, with a retention shift of 3 s for light versus heavy labeled peptides, which is roughly half the peak width. This shift in separation time did not have a significant effect on quantitation for either method for equal mixing ratios of the light-intermediate-heavy isotope labeled samples.  相似文献   

17.
王继峰  赵新元  赵焱  马成  钟儒刚  钱小红  应万涛 《色谱》2013,31(10):927-933
蛋白质的还原-烷基化是蛋白质酶切中的重要步骤,常用的烷基化试剂是碘乙酰胺(IAA),但是IAA除了和半胱氨酸发生反应,也可能和其他多种氨基酸发生副反应。我们模拟常规的酶切条件,系统地研究了蛋白质真实酶切时所有酶切肽段发生烷基化的情况。结果表明,多种氨基酸可以发生烷基化,其趋势为:半胱氨酸>肽段N端氨基酸>天冬氨酸>谷氨酸>组氨酸>天冬酰胺>赖氨酸>酪氨酸,同时也发现同一肽段上的氨基酸烷基化具有排他性和聚集性。根据定性结果,采用质谱多反应监测(MRM)技术对多个肽段进行了定量分析,评估了过烷基化对蛋白质定量分析的影响。该研究结果表明,过量的烷基化修饰对蛋白质的定性与定量分析都可能产生较大影响。在蛋白质组学研究的样本处理流程中,应避免样本的过烷基化。  相似文献   

18.
Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, γ-Glu-Cys-Gly) is the most abundant intra-cellular dicarboxylic tripeptide with multiple physiological roles. In biological samples, glutathione exists in its reduced form GSH and in two stable oxidized forms, i.e., in its symmetric disulfide form GSSG and as S-glutathionyl residue in proteins. S-Glutathionylation is a post-translational modification, which is involved in several pathophysiological processes, including oxidative stress. The GSH-to-GSSG molar ratio is widely used as a measure of oxidative stress. γ-Glutamyl is the most characteristic structural moiety of GSH. We performed gas chromatography-mass spectrometry (GC-MS) studies for the development of a highly specific qualitative and quantitative method for γ-glutamyl peptides. We discovered intra-molecular conversion of GSH, GSSG, γ-Glu-Cys and of ophthalmic acid (OPH; γ-glutamyl-α-amino-n-butyryl-glycine) to pyroglutamate (pGlu; 5-oxo-proline, also known as pidolic acid) during their derivatization with 2 M HCl/CH3OH (60 min, 80 °C). For GC-MS analysis, the methyl esters (Me) were further derivatized with pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v; 30 min, 65 °C) to their PFP derivatives. At longer reaction times, pGlu is hydrolyzed to Glu. Internal standards were prepared by derivatizing GSH, GSSG, γ-Glu-Cys and OPH in 2 M HCl/CD3OD. Quantification of the Me-PFP derivative of pGlu was performed in the electron-capture negative-ion chemical ionization (ECNICI) mode by selected-ion monitoring (SIM) of the mass-to-charge (m/z) ions 269 for unlabeled pGlu (d0Me-PFP-pGlu) and m/z 272 for the in situ prepared deuterium-labeled pGlu (d3Me-PFP-pGlu). Although not inherent to the analysis of small peptides, the present GC-MS method is useful to study several biochemical aspects of GSH. Using pentafluorobenzyl bromide (PFB-Br) as the derivatization reagent, we found that synthetic pGlu is converted in aqueous acetone (60 min, 50 °C) into its pentafluorobenzyl (PFB) ester (PFB-pGlu). This derivatization procedure is useful for the GC-MS analysis of free pGlu in the ECNICI mode. Quantitative analysis of PFB-pGlu by GC-MS requires the use of stable-isotope labeled analogs of pGlu as an internal standard.  相似文献   

19.
Small-mass-difference modifications to proteins are obscured in mass spectrometry by the natural abundance of stable isotopes such as 13C that broaden the isotopic distribution of an intact protein. Using a ZipTip (Millipore, Billerica, MA, USA) to remove salt from proteins in preparation for high-resolution mass spectrometry, the theoretical isotopic distribution intensities calculated from the protein’s empirical formula could be fit to experimentally acquired data and used to differentiate between multiple low-mass modifications to proteins. We could readily distinguish copper from zinc bound to a single-metal superoxide dismutase (SOD1) species; copper and zinc only differ by an average mass of 1.8 Da and have overlapping stable isotope patterns. In addition, proteins could be directly modified while bound to the ZipTip. For example, washing 11 mM S-methyl methanethiosulfonate over the ZipTip allowed the number of free cysteines on proteins to be detected as S-methyl adducts. Alternatively, washing with the sulfhydryl oxidant diamide could quickly reestablish disulfide bridges. Using these methods, we could resolve the relative contributions of copper and zinc binding, as well as disulfide reduction to intact SOD1 protein present from <100 μg of the lumbar spinal cord of a transgenic, SOD1 overexpressing mouse. Although techniques like ICP-MS can measure total metal in solution, this is the first method able to assess the metal-binding and sulfhydryl reduction of SOD1 at the individual subunit level and is applicable to many other proteins.   相似文献   

20.
Determining the relative levels of neuropeptides in two samples is important for many biological studies. An efficient, sensitive and accurate technique for relative quantitative analysis involves tagging the peptides in the two samples with isotopically distinct labels, pooling the samples and analyzing them using liquid chromatography/mass spectrometry (LC/MS). In this study, we compared two different sets of isotopic tags for analysis of endogenous mouse pituitary peptides: succinic anhydride with either four hydrogens or deuteriums and [3-(2,5-dioxopyrrolidin-1-yloxycarbonyl)propyl]trimethylammonium chloride with either nine hydrogens or deuteriums. These two labels react with amines and impart either a negative charge (succinyl) or a positive charge (4-trimethylammoniumbutyryl (TMAB)). Every endogenous mouse pituitary peptide labeled with the light TMAB reagent eluted from the C18 reversed-phase column at essentially the same time as the corresponding peptide labeled with the heavy reagent. Most of the peptides labeled with succinyl groups also showed co-elution of the heavy- and light-labeled forms on LC/MS. The mass difference between the heavy and light TMAB reagents (9 Da per label) was larger than that of the heavy and light succinyl labels (4 Da per label), and for some peptides the larger mass difference provided more accurate determination of the relative abundance of each form. Altogether, using both labels, 82 peptides were detected in Cpe(fat/fat) mouse pituitary extracts. Of these, only 16 were detected with both labels, 41 were detected only with the TMAB label and 25 were detected only with the succinyl label. A number of these peptides were de novo sequenced using low-energy collisional tandem mass spectrometry. Whereas the succinyl group was stable to the collision-induced dissociation of the peptide, the TMAB-labeled peptides lost 59 Da per H9 TMAB group. Several peptides identified in this analysis represent previously undescribed post-translational processing products of known pituitary prohormones. In conclusion, both succinyl and TMAB isotopic labels are useful for quantitative peptidomics, and together these two labels provide more complete coverage of the endogenous peptides. Copyright (c) 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号