首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cubic boron nitride single crystals are synthesized with lithium nitride as a catalyst under high pressure and high temperature. The main phases in the near-surface region, which around the single crystal are determined as a mixture of hexagonal boron nitride (hBN), cubic boron nitride (cBN) and lithium boron nitride (Li3BN2). High resolution transmission electron microscopy examinations show that there exist lots of nanometer-sized cubic boron nitride nuclei in this region. The interface phase structures of cubic boron nitride crystal and its near-surface region are investigated by means of transmission electron microscopy. The growth mechanism of cubic boron nitride crystal is analyzed briefly. It is supposed that LisBN2 impels the direct conversion of hBN to cBN as a real catalyst, and cBN is homogeneously nucleated in the molten state under high pressure and high temperature.  相似文献   

2.
Additive Ba(N 3) 2 as a source of nitrogen is heavily doped into the graphite-Fe-based alloy system to grow nitrogendoped diamond crystals under a relatively high pressure (about 6.0 GPa) by employing the temperature gradient method.Gem-grade diamond crystal with a size of around 5 mm and a nitrogen concentration of about 1173 ppm is successfully synthesised for the first time under high pressure and high temperature in a China-type cubic anvil highpressure apparatus.The growth habit of diamond crystal under the environment with high degree of nitrogen doping is investigated.It is found that the morphologies of heavily nitrogen-doped diamond crystals are all of octahedral shape dominated by {111} facets.The effects of temperature and duration on nitrogen concentration and form are explored by infrared absorption spectra.The results indicate that nitrogen impurity is present in diamond predominantly in the dispersed form accompanied by aggregated form,and the aggregated nitrogen concentration in diamond increases with temperature and duration.In addition,it is indicated that nitrogen donors are more easily incorporated into growing crystals at higher temperature.Strains in nitrogen-doped diamond crystal are characterized by micro-Raman spectroscopy.Measurement results demonstrate that the undoped diamond crystals exhibit the compressive stress,whereas diamond crystals heavily doped with the addition of Ba(N 3) 2 display the tensile stress.  相似文献   

3.
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NaN 3,large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6×1200),and the highest nitrogen concentration reaches approximately 1214-1257 ppm calculated by infrared absorption spectra.The synthesis conditions are about 5.5 GPa and 1240-1300 C.The growth behaviour of diamond with high-nitrogen concentration is investigated in detail.The results show that,with increasing the content of NaN 3 added in synthesis system,the width of synthesis temperature region for growth high-quality diamonds becomes narrower,and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure,the crystal growth rate is slowed down,nevertheless,the nitrogen concentration doped in synthetic diamond increases.  相似文献   

4.
We report on the growth of rock salt MgO films on sapphire (0001) substrates by rf plasma-assisted molecular beam epitaxy.A two-step method,i.e.high temperature epilayer growth after low-temperature buffer layer growth,was adopted to obtain the single crystal MgO film.The epitaxial orientation between the MgO epilayer and the sapphire (0001) substrate was studied by using in situ reflection high energy electron diffraction and ex situ x-ray diffraction,and it is found that the MgO film grows with [111] orientation.The role of the low temperature buffer layer in the improvement of crystal quality of the MgO epilayer is discussed based on the cross-sectional scanning electron microscopy.  相似文献   

5.
Thermal-electricaJ-fluid coupled finite element analyses are performed in the model of the growth cell in a high-pressure and high-temperature (HPHT) cubic apparatus in which the large diamond crystal can be grown by using Ni-based solvent with temperature gradient method (TGM). The convection in the Ni-based solvent with different thicknesses at 1700-1800 K is simulated by finite element method (FEM). The experiments of diamond crystal growth are also carried out by using Ni-based solvent at 5.7GPa and 1700-1800K in a China-type cubic high pressure apparatus (CHPA). The simulation results show that the Rayleigh number in the solvent is enhanced obviously with the increasing solvent thickness. Good quality diamond single crystal cannot be grown if the Rayleigh number in the solvent is too high.  相似文献   

6.
We report a new diamond synthesis process in which cubic boron nitride single crystals are used as seeds, FesoNi20 alloy powder is used as catalyst/solvent and natural flake-like graphite is used as the carbon source. The samples are investigated using laser Raman spectra and x-ray diffraction (XRD). Morphology of the sample is observed by a scanning electron microscope (SEM). Based on the measurement results, we conclude that diamond single crystals have grown on the cBN crystal seeds under the conditions of high temperature 1230℃ and high pressure 4.8 GPa. This work provides an original method for synthesis of high quality hereto-semiconductor with cBN and diamond single crystals, and paves the way for future development.  相似文献   

7.
Nanocrystalline molybdenum nitride (γ-Mo2N) with the cubic structure is prepared by the direct-current arc discharge method in N2 gas, using metal Mo or W rod as a cathode. The x-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize the product. It is found that the conversion of Mo to γ-Mo2N and affinity of Mo to N2 are determined by the nitrogen pressure. Moreover, we compare the effect of Mo and W rod as a cathode for preparing γ-Mo2N. The average size of γ-Mo2N particles is about 5 nm. The rapid quenching mechanism can be used to explain the formation of nanocrystalline γ-Mo2N.  相似文献   

8.
We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.  相似文献   

9.
A simple equation of state(EOS) in wide ranges of pressure and temperature is constructed within the MieGrneisen-Debye framework.Instead of the popular Birch-Murnaghan and Vinet EOS,we employ a five-parameter cold energy expression to represent the static EOS term,which can correctly produce cohesive energy without any spurious oscillations in the extreme compression and expansion regions.We developed a Pad’e approximation-based analytic Debye quasiharmonic model with high accuracy which improves the performance of EOS in the low temperature region.The anharmonic effect is taken into account by using a semi-empirical approach.Its reasonability is verified by the fact that the total thermal pressure tends to the lowest-order anharmonic expansion in the literature at low temperature,and tends to ideal-gas limitation at high temperature,which is physically correct.Besides,based on this approach,the anharmonic thermal pressure can be expressed in the Gru¨neisen form,which is convenient for applications.The proposed EOS is used to study the thermodynamic properties of MgO including static and shock compression conditions,and the results are very satisfactory as compared with the experimental data.  相似文献   

10.
There is a widespread interest in lead telluride (PbTe) as a good thermoelectric material. We report the temperature dependence of thermopower S(T) and resistance R(T) for PbTe at the different pressures of from 1.8GPa to 5 GPa obtained by using the cubic anvil high pressure apparatus. With increasing pressure, R(T) and S(T) decrease. The effect of pressure on R(T) is larger than that on S(T). The power factor that is determined by thermopower and resistivity increases with increasing pressure. This method is an efficient tool for synthesizing good thermoelectric materials at high pressure and high temperature.  相似文献   

11.
Diamond single crystals were synthesized in the presence of NI-Mn catalyst under high temperature and high pressure(HPHT).A thin metal film covering on as-grown diamond formed during diamond growth was examined using transmission electron microscopy.It was shown that phase compositions of the region near the as-grown diamond are different form those of other regions in the film.  相似文献   

12.
The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive. The lutetium polyhydrides were successfully synthesized at high pressure and high temperature conditions using a diamond anvil cell in combinations with the in-situ high pressure laser heating technique.The resistance measurements as a function of temperature were performed at the same pressure of synthesis in order to s...  相似文献   

13.
A series of high quality single crystalline epitaxial Zn 0.95 Co 0.05 O thin films is prepared by molecular beam epitaxy.Superparamagnetism and ferromagnetism are observed when the donor density is manipulated in a range of 10 18 cm 3-10 20 cm 3 by changing the oxygen partial pressure during film growth.The conduction shows variable range hopping at low temperature and thermal activation conduction at high temperature.The ferromagnetism can be maintained up to room temperature.However,the anomalous Hall effect is observed only at low temperature and disappears above 160 K.This phenomenon can be attributed to the local ferromagnetism and the decreased optimal hopping distance at high temperatures.  相似文献   

14.
《中国物理 B》2021,30(7):77502-077502
The single crystals of Nd_(0.5)Pr_(0.5)FeO_3 were successfully grown by optical floating zone method.Room temperature x-ray diffraction and Laue photograph declared the homogeneity and high quality of the crystal.The significant magnetic anisotropy and multiple magnetic transitions illustrate the complex magnetic structure.At high temperatures(T 66 K),it shows the typical characteristics of Γ_4(G_x,A_y,F_z) state.With the decrease of the temperature,it undergoes a first-order spin reorientation transition from Γ_4(G_x,A_y,F_z) to Γ_2(F_x,C_y,G_z) state in the temperature window of 45-66 K under an applied magnetic field of 0.01 T.As the temperature drops to ~17 K,a new magnetic interaction mechanism works,which results in a further enhancement of magnetization.The T-H phase diagram of Nd_(0.5)Pr_(0.5)FeO_3 single crystal was finally constructed.  相似文献   

15.
Polycrystalline cubic boron nitride(Pc BN) compacts, using the mixture of submicron cubic boron nitride(c BN) powder and hexagonal BN(h BN) powder as starting materials, were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃ without additives. In this paper, the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.% to 24 vol.%, which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure. Transmission electron microscopy(TEM) analysis shows that after high pressure and high temperature(HPHT) treatments, the submicron c BN grains abounded with high-density nanotwins and stacking faults, and this contributed to the outstanding mechanical properties of Pc BN. The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃ possessed the outstanding properties, including a high Vickers hardness(~ 61.5 GPa), thermal stability(~ 1290℃ in air),and high density(~ 3.46 g/cm~3).  相似文献   

16.
Structures and Equation of State of ε-Fe under High Pressure   总被引:1,自引:0,他引:1       下载免费PDF全文
The equation of state (EOS) and the axial ratio c/a of ε-Fe at high pressures are investigated by using the gen- eralized gradient approximation (GGA) within the plane-wave pseudopotential density functional theory (DFT). The results show that at the lower pressure, the EOS of ferromagnetic ε-Fe is consistent with the experimental result. While at higher pressure, the EOS of the nonmagnetic ε-Fe is in good agreement with the experimental result. Meanwhile, we find an obvious increase of the axial ratio c/a with pressure, and there is only a small increase with increasing temperature at high pressure.  相似文献   

17.
High-quality single crystals of A-site ordered perovskite oxides CaCu3Ru4O12 were synthesized by flux method with Cu O serving as a flux. The typical size of these single crystals was around 1 × 1 × 1 mm3 and the lattice constant was determined to be 7.430 ± 0.0009 ?A by using x-ray single crystal diffraction. The surfaces of the samples were identified to be(100) surface. The high quality of the single crystal samples was confirmed by the rocking curve data which have a full width at half maximum of approximately 0.02 degree. The x-ray photoelectron spectroscopy measurement was performed and the temperature-dependent specific heat, magnetic susceptibility, and electric resistivity were measured along the [100]direction of the single crystals. All these measurements showed that the physical properties of Ca Cu3Ru4O12 single crystals are similar to that of polycrystals. However, the single crystals have a lower Curie susceptibility tail and a smaller residual resistivity than polycrystals, which indicates that the amount of paramagnetic impurities can be controlled by tuning the number of defects in CaCu3Ru4O12 samples.  相似文献   

18.
With anatase-type titanium dioxide as the raw materials, the futile type titanium dioxide single crystal is prepared using the floating zone method. The results of XRD measurement show that the grown crystal is highly crystalline with a futile structure, which has orientation to the c-axis. The four Raman vibration characteristic peaks (143, 240, 450 and 610 cm^-1) at room temperature show that the crystalline structure of the single crystal is a typical futile phase, meanwhile a new Raman peak at around 690 cm^-1 is found. The results of the Raman measurement at various temperatures for the single crystal show that the Raman frequency shifts are different.  相似文献   

19.
We present a new method for detecting near-infrared, mid-infrared, and far-infrared photons with an ultrahigh sensitivity. The infrared photon detection was carried out by monitoring the displacement change of a vibrating microcantilever under light pressure using a laser Doppler vibrometer. Ultrathin silicon cantilevers with high sensitivity were produced using micro/nano-fabrication technology. The photon detection system was set up. The response of the microcantilever to the photon illumination is theoretically estimated, and a nanowatt resolution for the infrared photon detection is expected at room temperature with this method.  相似文献   

20.
In this paper,we report on the influence of annealing treatment on as-grown Ib-type diamond crystal under high pressure and high temperature in a china-type cubic anvil high-pressure apparatus.Experiments are carried out at a pressure of 7.0 GPa and temperatures ranging from 1700 C to 1900 C for 1 h.Annealing treatment of the diamond crystal shows that the aggregation rate constant of nitrogen atoms in the as-grown Ib-type diamond crystal strongly depends on diamond morphology and annealing temperature.The aggregation rate constant of nitrogen remarkably increases with the increase of annealing temperature and its value in octahedral diamond is much higher than that in cubic diamond annealed at the same temperature.The colour of octahedral diamond crystal is obviously reduced from yellow to nearly colorless after annealing treatment for 1 h at 1900 C,which is induced by nitrogen aggregation in a diamond lattice.The extent of nitrogen aggregation in an annealed diamond could approach approximately 98% indicated from the infrared absorption spectra.The micro-Raman spectrum reveals that the annealing treatment can improve the crystalline quality of Ib-type diamond characterized by a half width at full maximum at first order Raman peak,and therefore the annealed diamond crystals exhibit nearly the same properties as the natural IaA-type diamond stones of high quality in the Raman measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号