共查询到20条相似文献,搜索用时 15 毫秒
1.
Haiqiang Deng Xinjian Huang Lishi Wang Aimin Tang 《Electrochemistry communications》2009,11(6):1333-1336
A novel method of Fourier transformed square-wave voltammetry (FT-SWV) in combination with thin-film modified electrode was employed to investigate the kinetics of anion transfer across the liquid/liquid interface using a conventional three-electrode arrangement. Other than traditional SWV in which currents are sampled only at the end of each pulse, FT-SWV continuously collects the current response and then transforms it into frequency domain. Even harmonic frequencies, which are derived from the faradaic current response, will emerge in the power spectrum. The profile of the even harmonic power spectrum is parabolic and shows a maximum at a certain frequency. The maximum and the corresponding frequency are equivalent to the well-known “quasireversible maximum” and “critical frequency” (fmax) in traditional SWV, respectively. The rate constant and ion transfer coefficient α can be estimated by the obtained fmax. Compared with traditional SWV, FT-SWV is much simpler and faster in ion transfer kinetics estimation. 相似文献
2.
Quentel F Mirceski V L'Her M Mladenov M Scholz F Elleouet C 《The journal of physical chemistry. B》2005,109(27):13228-13236
A comparative study of the behavior of different sorts of three-phase electrodes applied for assessing the thermodynamics and kinetics of the ion transfer across the liquid/liquid (L/L) interface is presented. Two types of three-phase electrodes are compared, that is, a paraffin-impregnated graphite electrode at the surface of which a macroscopic droplet of an organic solvent is attached and an edge pyrolytic graphite electrode partly covered with a very thin film of the organic solvent. The organic solvent contains either decamethylferrocene or lutetium bis(tetra-tert-butylphthalocyaninato) as a redox probe. The role of the redox probe, the type of the electrode material, the mass transfer regime, and the effect of the uncompensated resistance are discussed. The overall electrochemical process at both three-phase electrodes proceeds as a coupled electron-ion transfer reaction. The ion transfer across the L/L interface, driven by the electrode reaction of the redox compound at the electrode/organic solvent interface, is independent of the type of redox probe. The ion transfer proceeds without involving any chemical coupling between the transferring ion and the redox probe. Both types of three-phase electrodes provide consistent results when applied for measuring the energy of the ion transfer. Under conditions of square-wave voltammetry, the coupled electron-ion transfer at the three-phase electrode is a quasireversible process, exhibiting the property known as "quasireversible maximum". The overall electron-ion transfer process at the three-phase electrode is controlled by the rate of the ion transfer. It is demonstrated for the first time that the three-phase electrode in combination with the quasireversible maximum is a new tool for assessing the kinetics of the ion transfer across the L/L interface. 相似文献
3.
Gulaboski R Mirćeski V Pereira CM Cordeiro MN Silva AF Quentel F L'Her M Lovrić M 《Langmuir : the ACS journal of surfaces and colloids》2006,22(7):3404-3412
The kinetics of the transfer of a series of hydrophilic monovalent anions across the water/nitrobenzene (W/NB) interface has been studied by means of thin organic film-modified electrodes in combination with electrochemical impedance spectroscopy and square-wave voltammetry. The studied ions are Cl-, Br-, I-, ClO4-, NO3-, SCN-, and CH3COO-. The electrode assembly comprises a graphite electrode (GE) covered with a thin NB film containing a neutral strongly hydrophobic redox probe (decamethylferrocene or lutetium bis(tetra-tert-butylphthalocyaninato)) and an organic supporting electrolyte. The modified electrode is immersed in an aqueous solution containing a supporting electrolyte and transferring ions, and used in a conventional three-electrode configuration. Upon oxidation of the redox probe, the overall electrochemical process proceeds as an electron-ion charge-transfer reaction coupling the electron transfer at the GE/NB interface and compensates ion transfer across the W/NB interface. The rate of the ion transfer across the W/NB interface is the limiting step in the kinetics of the overall coupled electron-ion transfer reaction. Moreover, the transferring ion that is initially present in the aqueous phase only at a concentration lower than the redox probe, controls the mass transfer regime in the overall reaction. A rate equation describing the kinetics of the ion transfer that is valid for the conditions at thin organic film-modified electrodes is derived. Kinetic data measured with two electrochemical techniques are in very good agreement. 相似文献
4.
The redox properties of lutetium bis(tetra-tert-butylphthalocyaninato) (LBPC) have been studied in nitrobenzene that is deposited as a microfilm on the surface of highly oriented pyrolytic graphite electrodes. The behavior of the modified electrode, which is immersed in an aqueous electrolyte solution, is typical for the three-phase electrode (Scholz, F.; Komorsky-Lovri?, S.; Lovri?, M. Electrochem. Comm. 2000, 2, 112-118). LBPC can be both oxidized and reduced in one electron reversible processes. The oxidation and the reduction of LBPC at the graphite/nitrobenzene interface is accompanied by the transfer of anion or cation, respectively, from the aqueous phase into the organic layer. Thus, using LBPC as a redox probe for the three-phase electrode, the transfer of both anions and cations across the water/nitrobenzene interface can be studied in a single experiment. The hydrophobicity of LBPC is so high that it enables inspection of cations and anions with Delta (nb)(w) (G)(theta)(Cat+) < or = 43 kJ/mol and Delta (nb)(w) (G)(theta)(X-) < or = 50 kJ/mol, respectively. The direct transfer of Na(+) and Li(+) from water to nitrobenzene, mutually saturated, is achieved for the first time at a macroscopic water/nitrobenzene interface. 相似文献
5.
Transfer of silver ions across the water/1,2-dichloroethane interface was studied by cyclic voltammetry (CV). In the absence of added neutral ionophore, Ag+ transferred across the interface when the organic phase contained either tetraphenylborate or tetrakis(4-chloro)phenylborate anions, but this transfer was not possible in the presence of organic phase hexafluorophosphate or perchlorate anions. The ion transfer processes observed were independent of the nature of the organic phase cation. The CV in the presence of tetraphenylborate exhibited a shape consistent with an ion transfer followed by chemical reaction; the rate constant for the following chemical reaction was 0.016 s(-1). In the presence of tetrakis(4-chloro)phenylborate, a return peak equivalent in magnitude to the forward peak was observed, indicative of a simple ion transfer reaction uncomplicated by accompanying chemical reactions. The selectivity of the transfer was assessed with respect to other metal cations: no transfers for copper, cadmium, lead, bismuth, cobalt, nickel, palladium or zinc were observed. The selectivity of the transfer suggests this can form the basis of a selective voltammetric methodology for the determination of silver ions. 相似文献
6.
7.
In the theoretical model it is assumed that a graphite disk electrode is covered by a thin film of solution of decamethylferrocene
(dmfc) and some electrolyte CX in nitrobenzene and immersed in an aqueous solution of the electrolyte MX. Oxidation of dmfc is accompanied by the transfer of anion X
− from water into nitrobenzene since it is also assumed that cations dmfc
+ and C
+ are insoluble in water and cation M
+ is insoluble in nitrobenzene. Kinetic parameters of the electrode reaction can be determined if the total potential difference
across the nitrobenzene/water interface is maintained constant by adding the electrolytes CX and MX in concentrations which are much higher than the initial concentration of dmfc in nitrobenzene. 相似文献
8.
Kinetically controlled electro-oxidation of a redox probe dissolved in the organic solvent, which is interposed between an electrode surface and an aqueous solution as a thin layer, is analyzed theoretically. It is demonstrated that the electrode reaction rate constant can be measured by the variation of scan rate in linear scan voltammetry both in the absence and in the superfluity of the supporting electrolyte dissolved in the film.Dedicated to Professor Dr. Alan M. Bond on the occasion of his 60th birthday 相似文献
9.
10.
Taylor AW Qiu F Hu J Licence P Walsh DA 《The journal of physical chemistry. B》2008,112(42):13292-13299
The electrochemical behavior of a redox-active, ferrocene-modified ionic liquid (1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) in acetonitrile and in an ionic liquid electrolyte (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) is reported. Reversible electrochemical behavior was observed in each electrolyte with responses typical of those for unmodified ferrocene observed in each medium. In the ionic liquid electrolyte, the diffusion coefficient of the redox-active ionic liquid increased by a factor of 5 upon increasing the temperature from 27 to 90 degrees C. The kinetics of electron transfer across the ionic liquid/electrode interface were studied using cyclic voltammetry, and the standard heterogeneous electron transfer rate constant, k (0) was determined to be 4.25 x 10 (-3) cm s (-1). Scanning electrochemical microscopy was then also used to probe the heterogeneous kinetics at the interface between the ionic liquid and the solid electrode and conventional kinetic SECM theory was used to determine k (0). The k (0) value obtained using SECM was higher than that determined using cyclic voltammetry. These results indicate that SECM is a very useful technique for studying electron transfer dynamics in ionic liquids. 相似文献
11.
Stevenson GP Lee CY Kennedy GF Parkin A Baker RE Gillow K Armstrong FA Gavaghan DJ Bond AM 《Langmuir : the ACS journal of surfaces and colloids》2012,28(25):9864-9877
A detailed analysis of the cooperative two-electron transfer of surface-confined cytochrome c peroxidase (CcP) in contact with pH 6.0 phosphate buffer solution has been undertaken. This investigation is prompted by the prospect of achieving a richer understanding of this biologically important system via the employment of kinetically sensitive, but background devoid, higher harmonic components available in the large-amplitude Fourier transform ac voltammetric method. Data obtained from the conventional dc cyclic voltammetric method are also provided for comparison. Theoretical considerations based on both ac and dc approaches are presented for cases where reversible or quasi-reversible cooperative two-electron transfer involves variation in the separation of their reversible potentials, including potential inversion (as described previously for solution phase studies), and reversibility of the electrode processes. Comparison is also made with respect to the case of a simultaneous two-electron transfer process that is unlikely to occur in the physiological situation. Theoretical analysis confirms that the ac higher harmonic components provide greater sensitivity to the various mechanistic nuances that can arise in two-electron surface-confined processes. Experimentally, the ac perturbation with amplitude and frequency of 200 mV and 3.88 Hz, respectively, was employed to detect the electron transfer when CcP is confined to the surface of a graphite electrode. Simulations based on cooperative two-electron transfer with the employment of reversible potentials of 0.745 ± 0.010 V, heterogeneous electron transfer rate constants of between 3 and 10 s(-1) and charge transfer coefficients of 0.5 for both processes fitted experimental data for the fifth to eighth ac harmonics. Imperfections in theory-experiment comparison are consistent with kinetic and thermodynamic dispersion and other nonidealities not included in the theory used to model the voltammetry of surface-confined CcP. 相似文献
12.
Fluctuation analysis was utilized to determine the TEA ion transfer kinetics across the water/1,2-dichloroethane interface. The obtained data were compared with those derived from electrochemical impedance spectroscopy experiments using the same electrolytic cell. The apparent standard rate constants ks determined by these two techniques have a similar value. The average value ks = 0.37 cm s− 1 is comparable with the previously reported value ks = 0.2 cm s− 1. The experimental approach utilizing a thick wall glass micro-capillary to fix the interface exhibits a very small stray capacitance value, proving this system to be suitable for determining the kinetics of the fast ion transfer across a liquid/liquid interface. Application of a method employing a small perturbation signal prevents polarization of the inner capillary surface by current flowing through the cell. The induced polarization of the capillary can affect ion concentration at the interface due to electroosmosis and thus make the kinetic data evaluation difficult or erroneous. 相似文献
13.
Georganopoulou DG Caruana DJ Strutwolf J Williams DE 《Faraday discussions》2000,(116):109-18; duscussion 171-90
In order to establish an experimental basis for exploring the reactivity of membrane-bound redox enzymes using electrochemistry at an organic/aqueous interface, the reactivity of glucose oxidase adsorbed at the dichloroethane/water interface has been studied. Turnover of glucose in the aqueous phase mediated by dimethyl ferricenium electrogenerated in the organic phase was measured by measuring the feedback current caused by recycling the mediator as the generator electrode approached close to the interface from the organic side. An unexpected self-exchange reaction of the ferrocene at the interface was suppressed by adsorption of a surfactant. The interfacial enzyme reaction could be distinguished from reaction within the bulk of the aqueous phase. Reaction within a protein-surfactant film formed at the interface is conjectured. 相似文献
14.
Mladenov M Mirceski V Gjorgoski I Jordanoski B 《Bioelectrochemistry (Amsterdam, Netherlands)》2004,65(1):69-76
The electrode reaction of glutathione (GSH) at the hanging mercury drop electrode is studied by means of square-wave voltammetry (SWV). At potentials more positive than -0.350 V (vs. Ag/AgCl (3 mol/l KCl)) the oxidation of the mercury electrode in the presence of GSH leads to creation of a sparingly soluble mercury-GSH complex that deposits onto the electrode surface. Under cathodic potential scan, the deposited complex acts as a reducible reactant, giving raise to a well-defined cathodic stripping reversible SW voltammetric response. The electrode reaction can be described by the scheme: Hg(SG)(2(s))+e(-)+2H((aq))(+) = Hg((l))+2GSH((aq)). Thus, the electrode reaction provides information on both thermodynamics and kinetics of the chemical interactions of GSH with mercury. An experimental methodology for measuring the kinetics of the electrode reactions, based on the property known as "quasireversible maximum", is developed. The standard redox rate constant is 5.09, 5.75 and 5.22 cm s(-1) in a phosphate buffer at pH 5.6, 7.0 and 8.5, respectively, with a precision of +/-10%. The high rate of the electrode reaction reflects the strong affinity of GSH towards chemical interaction with mercury. The electrode reaction is particularly sensitive to the presence of heavy metal ions such as Cu(2+), Cd(2+), and Zn(2+.) The rate of the electrode reaction decreases significantly in the presence of these ions due to simultaneous interactions of GSH with the respective ion and mercury. 相似文献
15.
A new approach to the voltammetric investigation of facilitated ion transfer processes is reported. The technique uses a rotating diffusion cell approach to induce laminar flow in the organic phase of a liquid|liquid electrochemical cell. The interface between two immiscible electrolyte solutions (ITIES) was stabilised against rotation with either γ-alumina or a track-etched polyester membrane. The resultant voltammetry is shown to be consistent with the Koutecký–Levich equation enabling kinetic parameters associated with facilitated transfer of sodium by dibenzo-18-crown-6 across the water|1,2-dichloroethane interface to be evaluated. In particular, the use of the more hydrophilic alumina membrane permits the uncertainties regarding the use of the membrane-stabilised ITIES, namely the interfacial position, to be eliminated. 相似文献
16.
Valentin Mirčeski François Quentel Maurice L’Her 《Electrochemistry communications》2009,11(6):1262-1264
Three-phase electrodes in combination with square-wave voltammetry are applied to study the transfer kinetics of chiral anions from water to the chiral 2-octanol. The experimental system used consists of a pyrolytic graphite electrode partly modified with a thin film of one of the enantiomers of 2-octanol, which was immersed into an aqueous solution containing anions of chiral 2-chloropropionic acid, 2-bromopropionic acid, or lactic acid. It is demonstrated that the kinetics of the ion transfer is a stereoselective. The rate of the ion transfer is higher when uncomplimentary transferring ion–solvent chiral isomers are used, i.e., (R)-ion and (S)-solvent, or (S)-ion and (R)-solvent. To the best of our knowledge this is the first evidence for the difference in the ion transfer kinetics of chiral isomers across water/chiral organic solvent interface. 相似文献
17.
The result of transferring a polarizable iodide anion across the H2O-CCl4 liquid/liquid interface was investigated in this study. The computed transfer-free energy profile or potential of mean force exhibits a minimum near the Gibbs dividing surface. These system characteristics are similar to those found in a corresponding study of iodide transfer across the H2O-vapor interface; however, the free energy minimum was lower at the H2O-vapor interface. Molecular dynamics simulations were also carried out to compare the concentrations of NaCl, NaBr, and NaI at the H2O-vapor and H2O-CCl4 interfaces. While the concentration of bromide and iodide ions were lower at the H2O-CCl4 interface when compared to the H2O-vapor interface, the chloride ion concentrations were similar at both interfaces. Analysis of the solvation structures of iodide and chloride ions revealed that the more polarizable iodide ion was less solvated than the chloride ion at the interface. This characteristic brought the iodide ion into greater contact with CCl4, resulting in repulsive interactions with CCl4 and reducing its tendency to move to the interface. 相似文献
18.
Abstrac Using liquid gallium electrodes it was proved that electrodiffusion method is a convenient tool for measuring the mass transfer
at liquid/liquid interface. It was shown that mass transfer coefficient at the liquid/liquid interface at high Reynolds numbers
is much more important in comparison to that measured at the solid/liquid interface at identical geometrical and hydrodynamic
conditions. In experiments with the flow induced by the rotation of the upper disc (working ring electrode is placed on the
bottom of the immobile disc), the Sherwood number increases in turbulent regime as Sh ∼ Re1.8 at the liquid/liquid interface, contrary to the traditional law Sh ∼ Re0.9 at the solid/liquid interface. In laminar regime the Sherwood number at the liquid/liquid and at the solid/liquid interfaces
follows the traditional dependence Sh ∼ Re0.5. It was shown that sharp increasing of the mass transfer coefficient at the liquid/liquid interface is closely related with
the appearance of the surface waves, the phenomenon is identified as a Kelvin-Helmholtz type instability.
Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 4, pp. 482–490.
The text was submitted by the authors in English. 相似文献
19.
20.
A model is developed for the accelerating effect of non-reacting ions adsorbed on the inner Helmholtz plane on the kinetics of electron transfer to a reactant which is also situated on the same plane near the electrode. It is assumed that the charge density of non-reacting ions around the reacting ion can be described by a two dimensional distribution function analogous to that used by Fuoss to describe ion pairing in the bulk of the solution. Kinetic equations are presented in which the discreteness-of-charge terms are explicitly included and the magnitude of these terms is estimated on the basis of a simple model. The estimates show that the acceleration of hydrogen ion in the presence of adsorbed iodide ions can be attributed to the electrostatic effect of the surrounding ionic atmosphere. 相似文献