首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We review systematic experimental and theoretical efforts that explored formation, structure and reactivity of PdZn catalysts for methanol steam reforming, a material recently proposed to be superior to the industrially used Cu based catalysts. Experimentally, ordered surface alloys with a Pd : Zn ratio of approximately 1 : 1 were prepared by deposition of thin Zn layers on a Pd(111) surface and characterized by photoelectron spectroscopy and low-energy electron diffraction. The valence band spectrum of the PdZn alloy resembles closely the spectrum of Cu(111), in good agreement with the calculated density of states for a PdZn alloy of 1 : 1 stoichiometry. Among the issues studied with the help of density functional calculations are surface structure and stability of PdZn alloys and effects of Zn segregation in them, and the nature of the most likely water-related surface species present under the conditions of methanol steam reforming. Furthermore, a series of elementary reactions starting with the decomposition of methoxide, CH(3)O, along both C-H and C-O bond scission channels, on various surfaces of the 1 : 1 PdZn alloy [planar (111), (100) and stepped (221)] were quantified in detail thermodynamically and kinetically in comparison with the corresponding reactions on the surfaces Pd(111) and Cu(111). The overall surface reactivity of PdZn alloy was found to be similar to that of metallic Cu. Reactive methanol adsorption was also investigated by in situ X-ray photoelectron spectroscopy for pressures between 3 x 10(-8) and 0.3 mbar.  相似文献   

2.
Methanol steam reforming (MSR) is an important means to produce hydrogen. While metal Pd shows no selectivity to MSR, PdZn alloy exhibits both high selectivity and activity towards this process. Recently a high temperature desorption peak of formaldehyde is observed when methanol is dosed onto Pd(111) surfaces on which 0.03-0.06 monolayer Zn is deposited. Strikingly such surface which is predominated by Pd atoms was suspected to be active for MSR. To determine the structure on which the high desorption peak is observed and its performance to MSR, we studied adsorption and dehydrogenation of formaldehyde on various models. It is demonstrated that the high desorption peak of CH(2)O may originate from the supported surface clusters. The calculated energy barriers of CH(2)O dehydrogenation show that while formaldehyde can decompose easily into formyl on the supported PdZn and Pd(2) clusters, this process is kinetically difficult on the surface Zn(3) clusters. It is further revealed that formation of dioxymethylene, the proposed precursor for CO(2) production, from formaldehyde and oxygen is feasible on the surface Zn cluster. Based on these calculations we predict that compared with 1:1 PdZn alloy, the activity of the Zn clusters to MSR is lower, though its selectivity may be higher.  相似文献   

3.
Methanol steam reforming, catalyzed by Pd/ZnO (PdZn alloy), is a potential source of hydrogen for on-board fuel cells. CO has been reported to be a minor side product of methanol decomposition that occurs in parallel to methanol steam reforming on PdZn catalysts. However, fuel cells currently used in vehicles are very sensitive to CO poisoning. To contribute to the understanding of pertinent reaction mechanisms, we employed density functional slab model calculations to study the decomposition of formaldehyde, a key intermediate in methanol decomposition and steam reforming reactions, on planar surfaces of Pd, Cu, and PdZn as well as on a stepped surface of PdZn. The calculated activation energies indicate that dehydrogenation of formaldehyde is favorable on Pd(111), but unfavorable on Cu(111) and PdZn(111). On the stepped PdZn(221) surface, the dehydrogenation process was calculated to be more competitive to formaldehyde desorption than on PdZn(111). Thus, we ascribe the experimentally observed small amount of CO, formed during steam reforming of methanol on the Pd/ZnO catalyst, to occur at metallic Pd species of the catalyst or at defect sites of PdZn alloy.  相似文献   

4.
Methanol steam re-forming, catalyzed by Pd/ZnO, is a potential hydrogen source for fuel cells, in particular in pollution-free vehicles. To contribute to the understanding of pertinent reaction mechanisms, density functional slab model studies on two competing decomposition pathways of adsorbed methoxide (CH(3)O) have been carried out, namely, dehydrogenation to formaldehyde and C-O bond breaking to methyl. For the (111) surfaces of Pd, Cu, and 1:1 Pd-Zn alloy, adsorption complexes of various reactants, intermediates, transition states, and products relevant for the decomposition processes were computationally characterized. On the surface of Pd-Zn alloy, H and all studied C-bound species were found to prefer sites with a majority of Pd atoms, whereas O-bound congeners tend to be located on sites with a majority of Zn atoms. Compared to Pd(111), the adsorption energy of O-bound species was calculated to be larger on PdZn(111), whereas C-bound moieties were less strongly adsorbed. C-H scission of CH(3)O on various substrates under study was demonstrated to proceed easier than C-O bond breaking. The energy barrier for the dehydrogenation of CH(3)O on PdZn(111) (113 kJ mol(-)(1)) and Cu(111) (112 kJ mol(-)(1)) is about 4 times as high as that on Pd(111), due to the fact that CH(3)O interacts more weakly with Pd than with PdZn and Cu surfaces. Calculated results showed that the decomposition of methoxide to formaldehyde is thermodynamically favored on Pd(111), but it is an endothermic process on PdZn(111) and Cu(111) surfaces.  相似文献   

5.
The adsorption and thermal desorption of Zn and ZnO on Pd(111) was studied in the temperature range between 300 and 1300 K with TDS, LEED, and CO adsorption measurements. At temperatures below 400 K, multilayer growth of Zn metal on the Pd(111) surface takes place. At a coverage of 0.75 ML of Zn, a p(2 x 2)-3Zn LEED structure is observed. Increasing the coverage to 3 ML results in a (1 x 1) LEED pattern arising from an ordered Zn multilayer on Pd(111). Thermal desorption of the Zn multilayer state leads to two distinct Zn desorption peaks: a low-temperature desorption peak (400-650 K) arising from upper Zn layers and a second peak (800-1300 K) originating from the residual 1 ML Zn overlayer, which is more strongly bound to the Pd(111) surface and blocks CO adsorption completely. Above 650 K, this Zn adlayer diffuses into the subsurface region and the surface is depleted in Zn, as can be deduced from an increased amount of CO adsorption sites. Deposition of >3 ML of Zn at 750 K leads to the formation of a well-ordered Pd-Zn alloy exhibiting a (6 x 4 square root 3/3)rect. LEED structure. CO adsorption measurements on this surface alloy indicate a high Pd surface concentration and a strong reduction of the CO adsorption energy. Deposition of Zn at T > 373 K in 10(-6) mbar of O2 leads to the formation of an epitaxial (6 x 6) ZnO overlayer on Pd(111). Dissociative desorption of ZnO from this overlayer occurs quantitatively both with respect to Zn and O2 above 750 K, providing a reliable calibration for both ZnO, Zn, and oxygen coverage.  相似文献   

6.
The adsorption and reaction of methanol and formaldehyde on two-dimensional PdZn alloys on a Pd(111) surface were studied as a function of the Zn content in the alloy in order to understand the role of Zn in Pd/ZnO catalysts for the steam reforming of methanol (SRM). Temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS) data show that Zn atoms incorporated into the Pd(111) surface dramatically decrease the dehydrogenation activity and alter the preferred bonding sites for adsorbed CO, CH3O, and CH2O intermediates. The experimental results obtained in this study are consistent with previous theoretical studies of this system and provide new insight into how Zn alters the reactivity of Pd.  相似文献   

7.
The decomposition of methoxide (CH(3)O) on a PdZn alloy is considered to be the rate-limiting step of steam re-forming of methanol over a Pd/ZnO catalyst. Our previous density functional (DF) studies (Langmuir 2004, 20, 8068; Phys. Chem. Chem. Phys. 2004, 6, 4499) revealed only a very low propensity of defect-free flat (111) and (100) PdZn surfaces to promote C-H or C-O bond breaking of CH(3)O. Thus, we applied the same DF periodic slab-model approach to investigate these two routes of CH(3)O decomposition on PdZn(221) surfaces that expose Pd, (221)(Pd), and Zn, (221)(Zn), steps. C-H bond cleavage of CH(3)O is greatly facilitated on (221)(Pd): the calculated activation energy is dramatically reduced, to approximately 50 kJ mol(-1) from approximately 90 kJ mol(-1) on flat PdZn surfaces, increasing the rate constant by a factor of 10(8). The lower barrier is mainly due to a weaker interaction of the reactant CH(3)O and an enhanced interaction of the product CH(2)O with the substrate. The activation energy for C-O bond scission did not decrease on the (221)(Pd) step. On the (221)(Zn) step, the calculated reaction barriers of both decomposition routes are even higher than on flat surfaces, because of the stronger adsorption of CH(3)O. Steps (and other defects) appear to be crucial for methanol steam re-forming on Pd/ZnO catalyst; the stepped surface PdZn(221)(Pd) is a realistic model for studying the reactivity of this catalyst.  相似文献   

8.
The growth and structure of Pd films on ZnO(0001) were investigated using high resolution electron energy loss spectroscopy, x-ray photoelectron spectroscopy, and low energy electron diffraction. Vapor deposited Pd films at 300 K were found to follow a two-dimensional (2D) island growth mode, in which 2D metal islands are formed up to a critical coverage at which point growth occurs primarily in a layer-by-layer fashion on top of the islands. Heating to only 350 K was found to be sufficient to induce partial agglomeration of Pd films into three-dimensional particles. In addition to causing further agglomeration into particles, heating to 700 K resulted in partial reduction of the ZnO surface and the formation of a PdZn alloy.  相似文献   

9.
Pd/Sibunit and Pd–M/Sibunit (M = Ga, Zn, or Ag) catalysts have been synthesized, and their catalytic properties in liquid-phase acetylene hydrogenation have been investigated. Doping of the palladium catalyst with a metal M leads to the formation of the Pd2Ga, PdZn, or Pd0.46Ag0.54 bimetallic compound. The bimetallic particles are much smaller (1.6–2.0 nm) than the monometallic palladium particles (4.0 nm). Doping with zinc raises the ethylene selectivity by 25% without affecting the activity of the catalyst. Specific features of the effect of each of the dopants on palladium are reported.  相似文献   

10.
Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Dedicated to Professor Dr. Algirdas Vaskelis on the occasion of his 70th birthday.  相似文献   

11.
The effect of alloying Pd with Ag on the hydrogenation of acetylene is examined by analyzing the chemisorption of all potential C(1) (atomic carbon, CH, methylene, and methyl) and C(2) (acetylene, vinyl, ethylene, ethyl, ethane, ethylidene, ethylidyne, and vinylidene) surface intermediates and atomic hydrogen along with the reaction energies for the elementary steps that produce these intermediates over Pd(111), Pd(75%)Ag(25%)/Pd(111), Pd(50%)Ag(50%)/Pd(111), and Ag(111) surfaces by using first-principle density functional theoretical (DFT) calculations. All of the calculations reported herein were performed at 25% surface coverage. The adsorption energies for all of the C(1) and C(2) intermediates decreased upon increasing the composition of Ag in the surface. Both geometric as well as electronic factors are responsible for the decreased adsorption strength. The modes of adsorption as well as the strengths of adsorption over the alloy surfaces in a number of cases were characteristically different than those found over pure Pd (111) and Ag (111). Adsorbates tend to minimize their interaction with the Ag atoms in the alloy surface. An electronic analysis of these surfaces shows that there is, in general, a shift in the occupied d-band states away from the Fermi level when Pd is alloyed with Ag. The s and p states also appear to contribute and may be responsible for small deviations from the Hammer-N?rskov model. The effect of alloying is more pronounced on the calculated reaction energies for different possible surface elementary reactions. Alloying Pd with Ag reduces the exothermicity (increases endothermicity) for bond-breaking reactions. This is consistent with experimental results that show a decrease in the decomposition products in moving from pure Pd to Pd-Ag alloys.(2-5) In addition, alloying increases the exothermicity of bond-forming reactions. Alloying therefore not only helps to suppress the unfavorable decomposition (bond-breaking) reaction rates but also helps to enhance the favorable hydrogenation (bond-forming) reaction rates.  相似文献   

12.
Introduction of a second metal can greatly modify the surface reactivity of a host metal. Recently Jeroro and Vohs found that Pd(111) deposited with 0.03-0.06 monolayer of Zn might possess unique activity to methanol steam reforming reaction. To investigate the distribution of the deposited Zn, we examined the adsorption of CO on two types of model systems. In the first model, Zn is in the top-layer of Pd(111) only, while in the second model Zn is placed in the subsurface exclusively. It is found that Zn atoms in the topmost layer show negligible effect on CO adsorption especially at hollow sites, whereas the second layer Zn atoms affect significantly the interaction of CO with the substrate. It is revealed that the negligible influence of the first layer Zn on CO adsorption is due to the offsetting of the ligand effect by the strain effect. On the other hand, the ligand effect dominates the CO adsorption in the second model where the strain effect is insignificant. It is demonstrated that the d-band centers correlate well with the binding energies of the second model, whereas no such good correlation exists for the first model. Our results show that the subsurface plays a more important role and the observed dramatic modification of surface reactivity of Pd(111) deposited with 0.03-0.06 ML Zn is most likely originated from the subsurface Zn atoms, if the coverage is not underestimated and the deposited Zn atoms are distributed uniformly within a layer.  相似文献   

13.
Formation and oxidation processes of PdZn nanoparticles on ZnO were successfully observed by means of in situ time-resolved X-ray absorption fine structure spectroscopy (XAFS), and the analysis of data on near-edge (XANES) and extended (EXAFS) structures revealed detailed changes in Pd during both processes. PdZn nanoparticles were formed on ZnO through a two-step scheme under a hydrogen atmosphere. The first process was the formation of metallic Pd nanoparticles, which was quickly finished within 1 s. The second process was the formation of PdZn nanoparticles, which took several tens of minutes. Oxidation of the PdZn nanoparticles also consisted of two processes. Zn atoms were oxidized prior to Pd atoms and the metallic Pd nanoparticles surrounded by ZnO were formed afterwards. Oxidation of the metallic Pd nanoparticles was scarce and very slow. According to the results of kinetic analyses, the metallic Pd surrounded by ZnO was a stable species under the oxidative atmosphere.  相似文献   

14.
The metalation behaviors of 5,15‐diphenylporphyrin (2H‐DPP) on Pd(111) and Cu/Pd(111) have been investigated using scanning tunneling microscopy and density functional calculations. We show that 2H‐DPP molecules deposited on Pd(111) surface form Pd‐DPP with a proportion of about 75% already at room temperature (RT). This is in contrast to non‐metalation adsorption of 2H‐DPP on Cu–Pd alloy at RT. Annealing to 323 K facilitates the metalation of 2H‐DPP on Cu–Pd alloy island. The comparison of the results indicates that the metalation of 2H‐DPP calls for both enough surface free energy of approaching N? H bond and enough reactivity of breaking N? H bond. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Both adsorption and dissociation of the diatomic molecular NO on Pd (100) and (111) surfaces are studied using the extended London‐Eyring‐Polyani‐Sato (LEPS) method constructed by means of 5‐MP (the 5‐parameter Morse potential). All critical characteristics of the system that we obtain, such as adsorption geometry, binding energy, eigenvalues for vibration, are in good agreement with the experimental results. On Pd (100) surface, NO prefers to adsorb in fourfold hollow site (H) uprightly at low coverage. With increase in the coverage NO gradually tilts in fourfold hollow and bridge sites. For NO? Pd (111) system, two adsorption states are found at low coverage, of which one adsorption state is the B(tilt) state that the centroid of NO projects at bridge site, another (H? B? H state) that NO almost parallels to the (111) surface with the vibration frequency of 610 cm?1, but the frequency is near to that of the atoms, which is easy to be ignored in experiments. At high coverage, two transitional states (BH and HT) are found. NO is difficult to dissociate on Pd (100) and (111) surfaces. Especially for NO? Pd (111) system, the three‐well‐potential dissociation mode is initially put forward to show the remarkable dissociation process with two dissociation transitional states of NO on Pd (111). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Introduction Atom adsorption on transition metal surfaces has attracted special attention as a base for understanding the fundamental processes of oxidative catalysis. Particularly interesting is the adsorption and diffusion of oxygen on well-defined metal surfaces. An oxygen covered palladium surface, for example, plays a central role in several important reactions such as oxidation of carbon monoxide and ammonia. In particular, the (100), (111), (110) surfaces and the interactions with oxyge…  相似文献   

17.
PdZn (1:1) alloy is assumed to be the active component of a promising catalyst for methanol steam reforming. Using density functional calculations on periodic supercell slab models, followed by atomistic thermodynamics modeling, we study the chemical composition of the surfaces PdZn(111) and, as a reference, Cu(111) in contact with water and hydrogen at conditions relevant to methanol steam reforming. For the two surfaces, we determine similar maximum adsorption energies for the dissociative adsorption of H(2), O(2), and the molecular adsorption of H(2)O. These reactions are calculated to be exothermic by about -40, -320, and -20 kJ mol(-1), respectively. Using a thermodynamic analysis based on theoretically predicted adsorption energies and vibrational frequencies, we determine the most favorable surface compositions for given pressure windows. However, surface energy plots alone cannot provide quantitative information on individual coverages in a system of coupled adsorption reactions. To overcome this limitation, we employ a kinetic model, from which equilibrium surface coverages of H, O, OH, and H(2)O are derived. We also discuss the sensitivity of our results and the ensuing conclusions with regard to the model surfaces employed and the inaccuracies of our computational method. Our kinetic model predicts surfaces of both materials, PdZn and Cu, to be essentially adsorbate-free already from very low values of the partial pressure of H(2). The model surfaces PdZn(111) and Cu(111) are predicted to be free of water-related adsorbates for a partial H(2) pressure greater than 10(-8) and 10(-5) atm, respectively.  相似文献   

18.
The vast majority of reports of self-assembled monolayers (SAMs) on metals focus on the use of gold. However, other metals, such as palladium, platinum, and silver offer advantages over gold as a substrate. In this work, palladium is electrochemically deposited from PdCl2 solutions on glassy carbon electrodes to form a substrate for alkanethiol SAMs. The conditions for deposition are optimized with respect to the electrolyte, pH, and electrochemical parameters. The palladium surfaces have been characterized by scanning electron microscopy (SEM) and the surface roughness has been estimated by chronocoulometry. SAMs of alkane thiols have been formed on the palladium surfaces, and their ability to suppress a Faradaic process is used as an indication for palladium coverage on the glassy carbon. The morphology of the Pd deposit as characterized by SEM and the blocking behavior of the SAM formed on deposited Pd delivers a consistent picture of the Pd surface. It has been clearly demonstrated that, via selection of experimental conditions for the electrochemical deposition, the morphology of the palladium surface and its ability to support SAMs can be controlled. The work will be applied to create a mixed monolayer of metals, which can subsequently be used to create a mixed SAM of a biocomponent and an alkanethiol for biosensing applications.  相似文献   

19.
The interaction of CO with structurally well-defined PdAg/Pd(111) surface alloys was investigated by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) to unravel and understand contributions from electronic strain, electronic ligand and geometric ensemble effects. TPD measurements indicate that CO adsorption is not possible on the Ag sites of the surface alloys (at 120 K) and that the CO binding strength on Pd sites decreases significantly with increasing Ag concentration. Comparison with previous scanning tunneling microscopy (STM) data on the distribution of Pd and Ag atoms in the surface alloy shows that this modification is mainly due to geometric ensemble effects, since Pd(3) ensembles, which are the preferred ensembles for CO adsorption on non-modified Pd(111), are no longer available on Ag-rich surfaces. Consequently, the preferred CO adsorption site changes with increasing Ag content from a Pd(3) trimer via a Pd(2) dimer to a Pd monomer, going along with a successive weakening of CO adsorption. Additionally, the CO adsorption properties of the surface alloys are also influenced by electronic ligand and strain effects, but on a lower scale. The results are discussed in comparison with previous findings on PdAg bulk alloys, supported PdAg catalysts and PdAu/Pd(111) model systems.  相似文献   

20.
Findings on the formation and features of nanosized particles based on palladium complexes, which are active in hydrogenation catalysis, are summarized. Depending on the nature of a reducing agent, nanosized particles formed by the reduction of palladium(II) phosphine complexes are either metallic nuclei stabilized by organophosphorus ligands or associates of polynuclear phosphido or phosphinideno palladium complexes whose surface contains immobilized Pd(0) clusters. The ensembles of the Pd(0) atoms are active in hydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号