首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several late transition metal and main group orthometallated imine complexes were synthesized by utilizing ortholithiated imine precursors. Magnesium, aluminum, zinc, copper(I), and tin(IV) complexes were isolated and characterized. Subsequent reactions with electrophiles such as Ph(2)PCl, MeI and I(2) yielded several functionalized products, including a new iminophosphine ligand and its corresponding copper(I) complex. The coordination modes of the orthometallated imine ligands, as well as the structures of the metal complexes, were studied in the solid state using small molecule X-ray diffraction when possible.  相似文献   

2.
Employing DFT and handling the solvent effects with the PCM model, the 1-acetylpiperazinyldithiocarbamate acpdtc ligand and its M(acpdtc)2 complexes, where M is Mn(II), Fe(II), Co(II), Ni(II) and Cu(II), are characterized computationally. The obtained results suggest that the piperazine ring adopts chair conformation in all the studied species. In the gas and solution phases, the chair form of the ligand is dominant. For the Mn, Fe and Co complexes the tetrahedral structure is more stable than the square form in the gas and solution phases. However, the Ni and Cu complexes adopt the square form, in which the complex has the inversion center. The calculated vibrational frequencies are in agreement with the experimental ones, confirming the suitability of the optimized geometries of the compounds. Atomic charges, electron distribution of the frontier orbitals, and stabilizing electron transfers are determined by the NBO analysis.  相似文献   

3.
Highly crosslinked polymeric networks formed by cyclodextrins (CD) have recently been shown to be highly versatile nanosponge systems, being for instance very efficient both for drug delivery and for pollutants removal. Here we report some molecular simulation results for dry and hydrated CD nanosponge models aimed to study their swelling behavior. We also report simulation results about the water mobility in these systems in terms of the calculated diffusion coefficient of “free” and of “bound” water molecules confined within the nanosponge cavities. Furthermore, we also suggest the presence of surface-constrained water molecules temporarily bound to the network surface but eventually set free in the bulk.  相似文献   

4.
A series of group 4 metal complexes Zr-(1)(2), Zr-(2)(2), Zr-(3)(2), Zr-(4)(2), Zr-(5)(2), Hf-(1)(2), and Hf-(4)(2) containing two bridged bis(phenolate) ligands of the (OSSO)-type were prepared by the reaction of the corresponding bis(phenol) and group 4 metal precursor MX(4) (X = O(i)Pr, CH(2)Ph) and isolated as robust, colorless crystals. NMR spectra indicate D(2) symmetry, in agreement with the solid state structure determined by single crystal X-ray diffraction study of the complexes Zr-(1)(2), Hf-(1)(2), Zr-(3)(2), Zr-(4)(2), and Zr-(5)(2). The complexes with the 1,4-dithiabutanediyl bridged ligands exhibit a highly symmetric coordination around the metal center. The introduction of the rigid trans-1,2-cyclohexanediyl bridged ligands led to a distorted coordination around the metal center in Zr-(4)(2) and Zr-(5)(2) when the ortho substituent is tert-butyl and the para substituent is larger than methyl. The complexes Zr-(1)(2), Zr-(2)(2), Zr-(3)(2), Zr-(4)(2) as well as Hf-(1)(2) and Hf-(4)(2) initiated the ring-opening polymerization of meso-lactide at 100 °C to give heterotactic polylactide with pronounced heterotacticity (>70%) and varying polydispersity (1.05 < M(w)/M(n) < 1.61). As shown by kinetic studies, zirconium complex Zr-(1)(2) polymerized meso-lactide faster than the homologous hafnium complex Hf-(1)(2).  相似文献   

5.
Reacting transition metal complexes in low oxidation states, containing one or two cyanide ligands, with methyltrioxorhenium(VII) leads to bridged mixed metal compounds in good yields. The Re(VII) core is then surrounded by five or six ligands, respectively. The strength of these CN bridges and thus the stability of the newly generated bimetallic compound strongly depends on the donor strength of the ligands surrounding of the Cr/Mo/W or Fe moiety. The stability of the mixed metal molecules is reflected in the temperature dependent behavior of their 17O-NMR spectra, in their IR (Re=O) stretching frequencies and force constants, as well as several other spectroscopic data. UV–vis absorption spectra show the appearance of charge transfer bands. In the case of the mixed Mo/Re complexes the 95Mo-NMR spectroscopy is also a helpful tool to examine the donor capability of the Mo moiety. The described compounds also show photosensitivity.  相似文献   

6.
7.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

8.
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study.  相似文献   

9.
Three new binuclear copper complexes of formulae $ \left[ {{\text{Cu}}_{2}^{\text{II}} {\text{Pz}}_{2}^{\text{Me3}} {\text{Br}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (1), $ \left[ {{\text{Cu}}_{ 2}^{\text{II}} {\text{Pz}}_{2}^{\text{Ph2Me}} {\text{Cl}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (2) and $ \left[ {{\text{Cu}}_{2}^{\text{II}} \left( {{\text{Pz}}^{\text{PhMe}} } \right)_{ 4} {\text{Cl}}_{ 4} } \right] $ (3) (PzMe3?=?3,4,5-trimethylpyrazole, PzPh2Me?=?4-methyl-3,5-diphenylpyrazole and PzPhMe?=?3-methyl-5-phenylpyrazole) have been synthesized and characterized by chemical analysis, FTIR and 31P NMR spectroscopy and single-crystal X-ray diffraction. Complex 1 is a doubly bromo-bridged dimer, while complexes 2 and 3 are chloro-bridged dimers. The Cu(II) centers are in a distorted tetrahedral geometry for 1 and 2 and a distorted square pyramidal N2Cl3 environment for 3.  相似文献   

10.
The metal coordination geometry in the active site of metalloproteins are very different from the one of small inorganic complexes, due to the inflexibility of the ligand set from amino acid side chains different from freely moving ligand set in synthesis. Using the sterically hindered 2,6-di-(p-fluorophenyl)benzoate(L) ligand, a series of mononuclear Co(II), Ni(II) and Cu(II) complexes of general formula [M(L)2(Hdmpz)2] (where, Hdmpz = 3,5-dimethyl pyrazole) have been synthesized and characterized by the variety of spectroscopic methods. A distorted octahedral geometry in case of nickel, tetrahedral geometry for cobalt and square pyramidal in copper was observed in the X-ray studies, which also revealed that the uncoordinated oxygen atom of the carboxylate group forms intramolecular hydrogen bonding with the N-H group of the coordinated 3,5-dimethylpyrazole in case of cobalt and copper.  相似文献   

11.
Reaction of N-(4-pyridyl)picolinamide (4-ppa), N-(4-pyridyl)nicotinamide (4-pna), N-(4-pyridyl)isonicotinamide (4-pina), and N-(2-pyridyl)isonicotinamide (2-pina) with divalent metal salts led to the formation of six new coordination complexes. The X-ray structure of [Zn(4-ppa)2Cl2] (1) shows a mononuclear structure with interesting intermolecular hydrogen bonding interactions. [Zn(4-pna)(OAc)2]n (2), Cu(4-pna)(OTf)2(DMF)2]n (3), {[Zn(4-pina)(DMF)4](OTf)2}n (4), {[Fe(4-pina)(DMF)4](OTf)2}n (5), and [Cu(2-pina)(OTf)2(DMF)2]n (6) are one-dimensional coordination polymers with conformational differences caused by the coordination donor disposition, which demonstrates the flexibility of the pyridylamide ligands in polymeric structures. Reflectance UV-visible spectra and thermal properties of the coordination polymers are also reported.  相似文献   

12.
The synthesis and characterization of iron and manganese complexes containing the tetrachlorocatecholboryl (BO2C6Cl4) ligand are reported. Crystallographic study of the methylcyclopentadienyl derivative (η5-C5H4Me)Fe(CO)2BO2C6Cl4 allows comparison of structure and bonding with related complexes of the type (η5-C5R5)Fe(CO)2B(OR)2 and reveals that the relative orientation of (η5-C5H4Me)Fe(CO)2 and BO2C6Cl4 moieties is influenced by intramolecular CH?O hydrogen bonding. Additionally, an alternative route to catecholboryl complexes from dilithiocatechol is reported.  相似文献   

13.
A series of germylene, stannylene and plumbylene complexes [η(2)(N,N)-Me(2)Si(DippN)(2)Ge:] (3a), [η(2)(N,N)-Ph(2)Si(DippN)(2)Ge:] (3b), [η(2)(N,N)-Me(2)Si(DippN)(2)Sn:] (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Pb:](2) (5a), and [η(2)(N,N)-Ph(2)Si(DippN)(2)Pb:] (5b) (Dipp = 2,6-iPr(2)C(6)H(3)) bearing bulky bis(amido)silane ligands were readily prepared either by the transamination of M[N(SiMe(3))(2)](2) (M = Sn, Pb) and [Me(2)Si(DippNH)(2)] or by the metathesis reaction of bislithium bis(amido)silane [η(1)(N),η(1)(N)-R(2)Si(DippNLi)(2)] (R = Me, Ph) with the corresponding metal halides GeCl(2)(dioxane), SnCl(2), and PbCl(2), respectively. Preliminary atom-transfer chemistry involving [η(2)(N,N)-Me(2)Si(DippN)(2)Ge:] (3a) with oxygen yielded a dimeric oxo-bridged germanium complex [η(2)(N,N)-Me(2)Si(DippN)(2)Ge(μ-O)](2) (6). All complexes were characterized by (1)H, (13)C, (119)Sn NMR, IR, and elemental analysis. X-ray single crystal diffraction analysis revealed that the metal centres in 3b, 4, and 5b are sterically protected to prevent interaction between the metal centre and the nitrogen donors of adjacent molecules while complex 5a shows a dimeric feature with a strong intermolecular Pb···N interaction.  相似文献   

14.
Five novel nickel(II) complexes have been successfully synthesized with a heterocyclic ligand, Opdac, [Ni(Opdac)2]Cl2 (1), [Ni(Opdac)2(CH3OH)2]Br2(CH3OH)2 (2), [Ni(Opdac)2]I2 (3), [Ni(Opdac)2NO3]NO3 (4) and [Ni(Opdac)2ClO4]ClO4 (5) where Opdac = 4-(1-H-1,3-benzimidazole-2-yl)-1,5-dimethyl-2-phenyl-1-2-dihydro-3-H-pyrazol-3-one. All the complexes were characterized by elemental analysis, molar conductivity, CHN analysis, magnetic susceptibility measurements, spectroscopic studies and TG/DTA methods. In all the complexes, Opdac acts as a bidentate ligand coordinating to Ni(II) ion via the benzimidazole imine nitrogen and the pyrazolone oxygen atoms. The complexes 1 and 3 have a tetrahedral geometry while 2, 4 and 5 have an octahedral geometry around the Ni(II) center.  相似文献   

15.
Two novel boron-based flexible scorpionate ligands based on 7-azaindole, Li[HB(azaindolyl)(2)(1-naphthyl)] and Li[HB(azaindolyl)(2)(mesityl)] {Li[(Naphth)Bai] and Li[(Mes)Bai] respectively}, have been prepared (mesityl = 2,4,6-trimethylphenyl). These salts have been isolated in two forms, either as dimeric structures which contain bridging hydride interactions with the lithium centres or as crystalline material containing mono nuclear bis-acetonitrile solvates. The newly formed ligands have been utilised to prepare a range of group nine transition metal complexes with the general formula [M(COD){κ(3)-NNH-HB (azaindolyl)(2)(Ar)}] (where M = rhodium, iridium; Ar = 1-naphthyl, mesityl; COD = 1,5-cyclooctadiene) and [Rh(NBD){κ(3)-NNH-HB (azaindolyl)(2)(Ar)}] (where NBD = 2,5-norbornadiene; Ar = 1-naphthyl, mesityl). These new complexes have been compared to the previously reported compounds which contain the related scorpionate ligands Li[HB(azaindolyl)(2)(phenyl)] and K[HB(azaindolyl)(3)] {Li[(Ph)Bai] and K[Tai] respectively}. Structural characterisation of the complexes [Rh(COD){κ(3)-NNH-HB (azaindolyl)(2)(mesityl)}], [Ir(COD){κ(3)-NNH-HB (azaindolyl)(2)(mesityl)}] and [Rh(NBD){κ(3)-NNH-HB (azaindolyl)(2)(naphthyl)}] confirm the expected κ(3)-NNH coordination mode for these new ligands. Spectroscopic analysis suggests strong interactions of the B-H functional group with the metal centres in all cases.  相似文献   

16.
Syntheses of (?)-menthylcyclopentadiene (MCp) and (+)-neomenthyl cyclopentadiene (NMCp) from (?)-menthol are described. These chiral ligands have been used to prepare (η5-MCp)2TiCl2, (η5-NMCp)2, TiCl2, (η5-MCp)2ZrCl2, (η5-NMCp)2ZrCl2, (η5-Cp)(η5-MCp)TiCl2 and (η5-Cp)(η5-NMCp)TiCl2. The structure and absolute configuration of (η5-Cp)(η5-MCp)TiCl2 has been established by X-ray analysis.  相似文献   

17.
A series of imidzoalium salt, L · HCl, for the potentially bidentate pyrazole/N-heterocyclic carbene was synthesized. Reactions of a 2:1 mixture between L · HCl bearing bulky N-substitution and Ag2O produced Ag(L)Cl, whereas a novel compound with unique stoichiometry AgL2(AgCl)0.5Cl was produced from L · HCl bearing N-methyl group under identical condition. Reactions of L · HCl with PdCl2 produced zwitterionic PdIICl3L · H. Selected structural determinations on L · HCl, Ag(L)Cl, AgL2(AgCl)0.5Cl, and PdIICl3L · H revealed intriguing crystal chemistry in which the less-stable gauche rotamers were obtained exclusively. A preliminary application of the zwitterionic complexes, PdIICl3L · H, in Heck coupling reaction of aryl bromide with n-butyl acrylate shows effective activity.  相似文献   

18.
Three 3-D coordination polymers, [Cu(cca)(4,4′-bipy)]n (1), [Co3(pda)3(1,10′-phen)2]n (2), and [Co(pda)(1,10′-phen)]n (3), have been synthesized from 4-carboxycinnamic acid (cca), 1,4′-phenylenediacrylic acid (pda), 4,4′-bipyridine (4,4′-bipy), 1,10′-phenanthroline (1,10′-phen), and Cu and Co salts under different conditions. The X-ray crystal structures of these three complexes are presented. Complex 1 exhibits a threefold 3-D α-Po interpenetration network. Complex 2 with a 3-D framework with six-connected single α-Po framework constructed from Co3 unit has been synthesized and characterized. Complex 3 shows a 3-D framework with bcu topology composed of 1-D rod-shaped secondary building units. Furthermore, the photocatalytic properties of 2 were studied. When excited by UV light, 2 exhibits photocatalytic activity, in 300?min, about 71% Rhodamine B decomposes.  相似文献   

19.
20.
Using a multicarboxylate ligand, 3,3',4,4'-oxydiphthalic acid (H(4)ODPA), and N-donor ligands, five metal(II)-ODPA complexes formulated as Cu(4)(ODPA)(2)(L1)(4)(H(2)O)(10)·2H(2)O (L1 = 4-(2-(pyridin-4-yl)vinyl)pyridine) (1), Co(H(2)ODPA) (L1)(H(2)O) (2), Zn(2)(ODPA)(2)(H(2)PIP)(2)·H(2)O (PIP = 1,3-bis(4-piperidinyl)propane) (3), Mn(2)(ODPA)(phen)(H(2)O)(2) (phen = phenanthroline) (4) and Cu(2)(H(2)ODPA)(2)(phen)(4)·H(2)O (5) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex 1 shows a three dimensional (3D) framework with an unprecedented (4.6(4).8)(2)(4(2).6(4)) topology generated by the polycatenation of 2D layers. Complex 2 exhibits a uninodal 4-connected 3D architecture with 6(5)8-cds topology. Complex 3 shows a uninodal 2D layer with 4(4)-sql topology. Complex 4 has a binodal (4,6)-connected non-interpenetrated 3D architecture with (3.4(3).5.6)(3(2).4(3).5(4).6(4).7(2)) topology. Complex 5 is a mononuclear Cu(II) complex. Complexes 1 and 5 can irreversibly and reversibly detect SCN(-), Cl(-), Br(-) and I(-) in water, respectively. Complexes 2-4 are not feasible candidates for colorimetric detection of anions in aqueous solution. The metal(II) species and the structure of the metal complex play important roles in the colorimetric detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号