首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a family of polymer stars with arms of varied tacticities is discussed. The effect of polymer tacticity on the physical properties of these polymer stars is dramatic. Dipentaerythritol cores support six poly(lactic acid) arms. Lewis acidic tin and/or aluminum catalysts control the polymerization to afford polymer stars of variable tacticity. Analysis of these polymers by 1H NMR spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, and differential scanning calorimetry reveals the effects of tacticity control on the physical properties of the polymer stars. Hydrolytic decomposition studies suggest that the degradation profile of a polymer star may also be tuned by stereochemical control. Differences between isotactic samples derived from rac‐lactide and L ‐lactide are heightened by longer arms of 50 and 100 monomer units. Control of polymer isospecificity shows that a ~70% isotacticity bias is necessary to induce crystallinity and alter the thermal and degradation properties of the material. Above 70% isotacticity, the degradation properties and thermal transitions can be further tuned across a relatively wide range. This technique allows for significant tunability to the physical properties of aliphatic polyester polymer stars. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
甲壳型液晶高分子的发展很大程度上依赖于聚合物自组装的发展,而各种可设计、可预测、可调控的自组装策略的涌现,将甲壳型液晶高分子研究推向前所未有的高度,同时也极大地丰富了高分子化学与物理的内容,提升了研究水准.研究表明,侧链"甲壳效应"在调控甲壳型液晶高分子有序结构等方面有着重要作用.本综述从甲壳型液晶高分子设计合成、液晶相态调控、嵌段共聚物自组装和功能化应用等方面,总结和评述了近年来该领域国内的最新研究进展.最后,本综述总结了甲壳型液晶高分子在发展中所面临的主要问题,并对其发展趋势进行了展望.  相似文献   

3.
为了优化脂肪族聚酯和聚磷酸酯在药物控释及基因治疗领域的性能, 以己二酰氯、二氯磷酸乙酯和二缩三乙二醇为原料, 用共缩聚的方法合成了一类新型脂肪族酯和磷酸酯的共聚物. 运用1H NMR, IR对共聚物的结构进行了表征; 利用MALDI-TOF MS测定了共聚物的分子量; 研究了反应时间、投料顺序、溶剂、反应温度和缚酸剂对聚合反应的影响; 通过动态接触角的测定, 探讨了此类聚合物的亲疏水性能; 以中性红为模型药物, 研究了该类聚合物的药物缓释性能.  相似文献   

4.
立构复合结晶是高分子结晶中的一种普遍现象,也是不同高分子之间共结晶的特殊形式.互为立体异构高分子在共混物和立体嵌段共聚物中可形成立构复合结晶.由于这种独特的链凝聚结构,立构复合结晶材料与相应的同质结晶材料的性能显著不同,立构复合结晶通常可提高高分子材料的熔点、耐热性、结晶能力、结晶度、机械力学性能、耐溶剂性能等.通过立构复合结晶,可使一些非晶或难结晶的高分子转变为可结晶或高结晶度的状态,从而实现材料性能的转变.因此,互为立体异构高分子之间的立构复合结晶为聚合物材料的性能优化和调控提供了有效的途径.文献已报道了多类可立构复合结晶的聚合物体系,包括脂肪族聚酯、脂肪族聚碳酸酯、聚甲基丙烯酸酯、聚酰胺和聚酮等.本文根据聚合物化学结构的不同,针对文献已报道的可立构复合结晶的高分子体系,综述了其立构复合结晶的形成条件、结构特征与物理性质.  相似文献   

5.
Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated, This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagencoating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains ; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.  相似文献   

6.
Chemical modification of polymers via catalysis has recently emerged as an area of increasing importance in macromolecular chemistry. It provides an efficient synthetic route for the production of novel polymers with desirable physical properties and functional groups which are often inaccessible by conventional polymerization techniques. Diene-based polymers and copolymers are ideal for chemical modification because of the technological importance associated with the parent materials and the reactivities of the double bonds in the polymer chain. In employing organometallic catalysts for such modifications, it has been found that the ligand environment of the catalyst as well as the functionality of the polymer has a profound effect on the nature of the macromolecule-metal complex interaction and the resulting polymer modification. The importance of the macromolecule metal complex interactions and the design of appropriate catalyst systems is illustrated for the hydrogenation, hydroformylation/hydroxymethylation and hydrosilylation of a number of polymers.  相似文献   

7.
The goal of the investigation presented here is the development of extremely hydrophobic materials based on polysulfone that can be applied, for instance, as fouling-resistant membrane materials. The concept used is the addition of semifluorinated polymers to polysulfone in suitable blend compositions. The influence of molecular parameters like chain structure of the semifluorinated polymer (segmented block copolymers, random copolymers) and segment molecular weight on the state of phase separation in the bulk and its influence on the surface properties have been systematically examined. It could be shown that segmented block copolymers with semifluorinated polyester segments with intermediate segment molecular weight are more suitable in blends with polysulfone than random polysulfone copolymers having semifluorinated side chains with respect to form homogeneous thin films (coatings) with highly non-wetting properties.  相似文献   

8.
甲壳型液晶高分子研究进展与展望   总被引:3,自引:0,他引:3  
简要介绍了甲壳型液晶高分子的模型理论, 概述了当前国内外对甲壳型液晶高分子设计、 液晶相态、 性质及基于甲壳型液晶高分子的嵌段共聚物体系的设计和自组装性质等研究进展, 展望了今后的研究方向.  相似文献   

9.
Atom transfer radical polymerization (ATRP) is one of the most popular advanced polymerization techniques in macromolecular science, allowing the synthesis of tailor-made polymers with controlled molecular weight, architecture, composition, and functionality. The combination of ATRP and ring-opening polymerization (ROP) provides a straightforward route for the preparation of polymers exhibiting both targeted and well-defined features and biodegradability, which is very interesting for the development of new materials for biomedical applications. Among the different types of polymer architectures, amphiphilic star block copolymers (BCPs) represent a very attractive one, due to their high degree of functionality at the molecular surface, low hydrodynamic volume and higher encapsulation ability, compared to molecular systems based on linear polymers. This review article highlights the research focused on the synthesis of amphiphilic well-defined degradable star BCPs by combination of ROP and ATRP, with particular focus on the development of polymers for biomedical applications, such as anticancer drug delivery, diagnosis therapy, or photodynamic therapy, which is the most investigated field regarding these polymers.  相似文献   

10.
Inorganic polymers are relatively unexplored because the efficient formation of macromolecular chains from atoms of transition metals and main group elements has presented a synthetic challenge. Nevertheless, these materials offer exciting opportunities for accessing properties that are significantly different from and which therefore complement those available with the well‐established organic systems. Inorganic block copolymers are of particular interest for the generation of functional, nanoscale supramolecular architectures and hierarchical assemblies using self‐assembly processes. This article focuses on research in my group over the past decade, which has targeted the development of new and controlled routes to inorganic polymers and their subsequent use in forming supramolecular materials as well as studies of their properties and applications. The use of ring‐opening polymerization (ROP) and transition‐metal‐catalyzed polycondensation approaches are illustrated. Controlled ROP procedures have been developed that allow access to polyferrocene block copolymers that self‐assemble into interesting nanoscopic architectures such as cylinders and superstructures such as flowers. The future prospects for inorganic polymer science are discussed, and a growing emphasis on the study of supramolecular inorganic polymeric materials is predicted. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 179–191, 2002  相似文献   

11.
12.
聚己内酯(poly-ε-caprolactone,PCL)是一种人工合成的聚酯类高分子材料,对人体无毒,具有良好的生物相容性、生物可降解性和无免疫原性。PCL还对其它聚合物具有良好的相容性,可以制备出多种性能优良的共聚物或共混物,因此PCL及其共聚物、共混物作为药物载体的研究受到国内外研究者的高度重视。此外,PCL因其在人体中的降解过程十分缓慢可作为药物控释材料,目前已经获得美国FDA的批准。本文将从聚己内酯的合成与改性及其各剂型在药物载体方面的研究进展进行综述。  相似文献   

13.
A combination of different types of cationic ring-opening polymerizations (CROPs) has been used to construct macromolecular structures containing polymer segments with different physicochemical properties. The cyclic monomers used are tetrahydrofuran (THF), N-tert-butyl aziridine (TBA), 2-methyl-1, 3-oxazoline (MeOX) and 1, 3-dioxolane (DXL). The macromolecular structures include different block and graft copolymers, telechelics and macromonomers, star- and comb-shaped polymers, polymer networks and interpenetrating polymer networks (IPNs).  相似文献   

14.
Copolymerization is a commonly employed method for optimizing the properties of polymer materials. Incorporating ether segments into polyesters main chain to obtain polyether-polyester copolymers is an effective strategy to realize the integration of multiple properties of polyester and polyether, and to develop more high-performance, multi-purpose polymer materials. Herein, the synthesis of poly(ether-ester)s is accessible by employing the biphenyl-linked heterodinuclear salen Cr-Al complex in the presence of PPNCl for the copolymerization of epoxides and ε-caprolactone(CL). Monitoring the copolymerization process reveals that catalyst 1 exhibited good performance for the copolymerization of epoxides and CL, affording copolymers with a gradient sequence structure. The dynamic thermomechanical analysis(DMA) study indicates the obtained poly(ether-ester)s possess enhanced flexibility compared with the block copolymers or blend of PPO and PCL homopolymers with the same ratio. This study provides a theoretical basis for the preparation of high-performance polymer materials.  相似文献   

15.
Diblock copolymers, in which both blocks are composed of aliphatic polyesters, were synthesized from two different alkyne‐functionalized δ‐valerolactone monomers by ring opening polymerization and subsequent click cycloaddition. Trimethylsilyl protection of the alkyne functionality of one block was instrumental to the success of the synthesis. These novel aliphatic polyester diblock copolymers were characterized by 1H and 13C NMR spectroscopy, gel permeation chromatography (GPC), and infrared (IR) spectroscopy. Sequential functionalization of the diblock copolymers with hydrophobic groups on one block, and hydrophilic groups on the other block, provides access to amphiphilic structures. Micellar structures generated from these polyester amphiphiles were characterized by fluorescence spectroscopy and transition electron microscopy (TEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

16.
Hyperbranched polymers, dendritic macromolecules with branch‐on‐branch structures, have become an important polymer class since the early 1990s. They combine several advantages of the perfectly branched dendrimers with easy accessibility, typically in a one‐step synthesis. Hyperbranched polyethers are a particularly interesting class of chemically stable and often biocompatible materials. Multifunctional hyperbranched polyethers with controllable molar mass and comparably low polydispersities can been prepared using hydroxyl‐functional epoxides or oxetanes for polymerization via anionic and cationic polymerization mechanisms. Here, we review the progress in the preparation, characterization, and application of these uniquely versatile aliphatic polyether polyols. Their unusual mechanical, thermal, and solution properties render them useful for a variety of applications, for example, as building blocks for various complex macromolecular architectures or in biomedical applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
A new strategy for the preparation of functional, multiarm star polymers via nitroxide-mediated "living" radical polymerization has been explored. The generality of this approach to the synthesis of three-dimensional macromolecular architectures allows for the construction of nanoscopically defined materials from a wide range of different homo, block, and random copolymers combining both apolar and polar vinylic repeat units. Functional groups can also be included along the backbone or as peripheral/chain end groups, thereby modulating the reactivity and polarity of defined portions of the stars. This modular approach to the synthesis of three-dimensional macromolecules permits the application of these tailored materials as multifunctional hosts for hydrogen bonding, nanoparticle formation, and as scaffolds for catalytic groups. Examples of applications of the functional stars in catalysis include their use in a Heck-type coupling as well as an enantioselective addition reaction.  相似文献   

18.
The efficient formation of soluble, processable polymers with main chains containing inorganic elements provides a synthetic challenge but represents potentially important approach to new macromolecular and supramolecular materials with interesting properties. This talk will survey some of the recent research performed in our group concerning the development of controlled routes to a variety of different inorganic polymer systems and the use of the resulting materials in self-assembly processes.  相似文献   

19.
The influence of macromolecular architecture on the physical properties of polymeric materials has been studied by comparing poly(benzyl ether) dendrons with their exact linear analogues. The results clearly confirm the anticipation that dendrimers are unique when compared to other architectures. Physical properties, from hydrodynamic volume to crystallinity, were shown to be different, and in a comparative study of core encapsulation in macromolecules of different architecture, energy transduction from the polymer backbone to a porphyrin core was shown to be different for dendrimers as compared to that of isomeric four- or eight-arm star polymers. Fluorescence excitation revealed strong, morphology dependent intramolecular energy transfer in the three macromolecular isomers investigated. Even at high generations, the dendrimers exhibited the most efficient energy transfer, thereby indicating that the dendritic architecture affords superior site isolation to the central porphyrin it surrounds.  相似文献   

20.
The increasing control that synthetic chemists are able to exert over molecular architecture is allowing the design and preparation of macromolecular and polymeric systems of unprecedented sophistication. In form and function, synthetic polymers are able to mimic many biological polymers, in effect ‘blurring the boundaries’ between the worlds of artificial and natural materials. In this review, some key examples from the merging interface between synthetic and natural polymers are considered, and illustrations of both ‘bio-inspired’ synthetic macromolecular chemistry and new directions in polymer materials are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号