首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with the development and application of numerical models for the simulation of solidification problems liquid/solid taking diffusion and convection into account. For the calculation of the thermal coupled flow process the finite element method is applied. In order to improve the numerical stability of the free convection problems, the streamline-upwind/Petrov–Galerkin method is used. Solidification processes are moving boundary problems. Three different models are set up which consider latent heat at the solidification front respectively in the mixed zone during the phase transition. Moreover, numerical methods are investigated in order to describe the behaviour of the flow at the boundary of the moving phase. Three examples serve illustrations; the technical example – casting of a transport and storage container – was provided by the company Siempelkamp Gießerei GmbH.  相似文献   

2.
At present, there are numerous experimental and theoretical papers concerned with the behavior of soft soils under explosive loading; e.g., see [1–5]. The case of frozen soils is quite different. There are known only a few papers presenting the results of experimental [6–8] and numerical [9, 10] studies. The numerical results were obtained by solving one-dimensional problems on the explosion of a spherical charge. In the present paper, we give the results of numerical studies of wave processes caused by the explosion of a spherical charge in a homogeneous or layered frozen soil with allowance for the free surface and the finite depth of the freezing boundary. Frozen and soft soils are modeled by Grigoryan’s medium with irreversible bulk and shear strains. We analyze how the free boundary and the interface affect the wave parameters. The results of numerical calculations are compared with known experimental data.  相似文献   

3.
Minsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 55–60, September–October, 1994.  相似文献   

4.
In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell’s equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell’s equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system.  相似文献   

5.
With an ever increasing demand for more effective heat sinks, liquid based electronic cooling has become a new prospect in the field. The present study introduces an electrohydrodynamic (EHD) pump with a simple design for dielectric liquids which have potential applications for electronic cooling. The pump consists of an eccentrically sandwiched wire electrode placed at the horizontal centerline between two parallel flat-plate electrodes. The EHD flow of dielectric liquid induced by the space charge generated due to the Onsager effect was obtained by the numerical solution of the Poisson–Nernst–Planck equations for ion transport and the Navier–Stokes equations for fluid flow. Good agreement obtained in the comparison of the numerical and the experimental results of velocity for the centrally sandwiched wire electrode case confirmed the validity of the numerical results. For a fixed voltage, the pump flow rate depends on the eccentricity of the wire electrode with respect to the plate electrodes and also with the electrode dimensions. By using the Taguchi method an optimum design for the EHD pump is obtained considering the wire electrode diameter, the flat plate electrode length and the eccentricity (the horizontal distance between the centers of wire and flat-plate electrodes) as the design parameters for fixed channel dimensions.  相似文献   

6.
The problem of sudden opening of one end of a circular pipe containing a pressurized gas is considered. A new form of the boundary condition at the open end of the pipe is proposed that takes into account the local hydrodynamic drag due to the nonlinearity of the real physical problem. The system of gas-dynamic equations is integrated by the Godunov numerical method of discontinuity decay. The procedure of numerical realization of the nonlinear boundary condition at the open end of the pipe is described in detail. Comparison of the graphs obtained in the calculations with experimental data indicates that the proposed technique is appropriate. Deceased. State Scientific Engineering Center of Systems of Control and Emergency Response, State Atomic Energy Committee of Ukraine, Kiev 252011. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 74–79, January–February, 1999.  相似文献   

7.
The main object of this paper is the initial value problem for the time-dependent Maxwell’s system with tensor dielectric permittivity describing the electromagnetic wave propagation in anisotropic dielectrics. Using the symbolic and algebraic computations in MATLAB a new method of constructing the exact solution of this initial value problem is obtained. The collection of images of electromagnetic waves in different anisotropic dielectrics is created by this method. This collection can be used for the study of properties of anisotropic dielectrics and evaluation of different computational methods.  相似文献   

8.
We present a high resolution numerical solution of the Vasilev reflection configuration within the framework of depth averaged two-dimensional inviscid shallow water flow. The study provides the details of the steady flow field and shock wave pattern close to the triple point which confirm the four-wave theory. The shape of the reflected shock in the region upstream of the supercritical patch is also investigated.   相似文献   

9.
The problem of attenuating the noise from weapons firing is studied experimentally and numerically. As a possible method of attenuating the noise significantly, a silencer with no internal baffles is attached to the M242 cannon. The internal pressures inside the muffler are measured. The near-field overpressures outside the muffler at various polar angles are also measured. A numerical simulation of the flow through the muffler is performed, using Harten's shock-capturing method to solve the Euler equations of ideal compressible flow. The numerical simulation yields a detailed picture of the flow field as displayed by the pressure and Mach contours. Pressure–time curves at selected locations are obtained and compared with experimental data. There is good agreement, except that the numerical simulation generates more vigorous oscillations.  相似文献   

10.
Summary The underwater welding problem has been formulated for the thermoelastic body as the sequence of the thermal free-boundary problem and the thermomechanical contact problem. The thermal free-boundary problem is discussed due to accounting for phase transformations. The contact problem is considered to establish interactions between a weld and elements of weldment and residual stresses inside the weldment.
Thermomechanische Simulation des Unterwasser-Schweißens
Übersicht Das Unterwasser-Schweißen wird als Folge eines thermischen Problems für einen thermoelastischen Körper mit freien Oberflächen und eines thermomechanischen Kontaktproblems formuliert. Das thermische Problem mit freien Oberflächen wird zwecks Berücksichtigung von Phasentransformationen erörtert. Das Kontaktproblem wird behandelt, um Wechselwirkungen zwischen Schweißnaht, verschweißten Teilen und Eigenspannungen zu ergründen.


Dedicated to Professor Dr. rer. nat. Dr. naut. h. c. Horst Lippmann on the occasion of his 60th, birthday on May 7, 1991  相似文献   

11.
New concepts for the study of incompressible plane or axisymmetric flows are analysed by the stream tube method. Flows without eddies and pure vortex flows are considered in a transformed domain where the mapped streamlines are rectilinear or circular. The transformation between the physical domain and the computational domain is an unknown of the problem. In order to solve the non-linear set of relevant equations, we present a new algorithm based on a trust region technique which is effective for non-convex optimization problems. Experimental results show that the new algorithm is more robust compared to the Newton-Raphson method.  相似文献   

12.
A numerical simulation of isothermal wetting suppression in the presence of shear is considered during which wetting may be prevented when a drop approaches a moving wall. Air is driven into the passage between the solid and liquid surfaces by viscous action, preventing wetting. Silicone‐oil and water drops are investigated for different wall velocities and wall distances. The droplet dimples at the upstream side and bulges at the downstream side when nonwetting occurs. The free‐surface deformation can be enlarged by either increasing the wall velocity or decreasing the wall distance. The low‐viscosity silicone‐oil used in these calculations is much more sensitive to shear wetting suppression than is water, because the Weber number of the silicone‐oil is larger than that of water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
亚、跨、超音速及不可压流动的数值分析方法的研究   总被引:4,自引:0,他引:4  
为了对亚、跨、超音速及不可压无粘流动进行数值模拟,将LU-SGS方法与预处理方法结合,给出了PLU-SGS方法。方程离散基于有限体积法,采用高阶精度AUSMPW格式。方程求解采用了特征边界条件。通过典型算例的数值试验对比分析,表明PLU-SGS方法可以有效地对亚、跨、超音速及不可压流动进行数值模拟,并具有较高的计算精度和收敛速度。  相似文献   

14.
In this paper, the “FLIC” difference method with triangular mesh is adopted to numerically simulate the regular and Mach reflections that occur when a shock wave pass around a wedge. The compuational result is compared with the shock tube experimental results of G. Ben-Dor and I. I. Glass. The comparison shows that the position, shape of shock wave and height of Mach stem all show a good agreement. Consequently, the “FLIC” difference method with triangular mesh is quite satisfactory in numerical simulation of the regular and Mach reflections.  相似文献   

15.
水力压裂是在高压粘滞流体或清水作用下地层内裂缝起裂与扩展的过程。由于包含岩石断裂和流-固耦合等复杂问题,对该过程的数值模拟具有相当大的挑战性。本文建立基于有限元与离散元混合方法的裂纹模型,模拟岩石裂纹扩展,实现了连续向非连续的转化;建立双重介质流动模型,裂隙流作为孔隙渗流的压力边界,孔隙渗流反作用裂隙的压力求解,处理了流体在基岩与人工裂缝中的协调流动;将裂纹模型与流体流动模式进行结合,建立断裂-应力-渗流耦合形式的力学模型,进一步分析了水力压裂的基本过程,综合多种数值计算方法,编写程序,在验证岩体裂纹模型与双重介质流动模型有效性的基础上,对压裂过程进行复现,将模拟结果与文献结果进行了对比,并讨论了所构建模型的优缺点。  相似文献   

16.
In the non-inertial coordinates attached to the model wing, the two-dimensional unsteady flow field triggered by the motion of the model wing, similar to the flapping of the insect wings, was numerically simulated. One of the advantages of our method is that it has avoided the difficulty related to the moving-boundary problem. Another advantage is that the model has three degrees of freedom and can be used to simulate arbitrary motions of a two-dimensional wing in plane only if the motion is known. Such flexibility allows us to study how insects control their flying. Our results show that there are two parameters that are possibly utilized by insects to control their flight: the phase difference between the wing translation and rotation, and the lateral amplitude of flapping along the direction perpendicular to the average flapping plane.  相似文献   

17.
In the first part of this paper a numerical strategy is developed for the numerical simulation of the coextrusion process. Coextrusion consists of extruding many polymers in the same die in order to combine their respective properties. The die is generally flat and quite large and consequently a two-dimensional approximation is sufficient. The main difficulty is to accurately predict the interfaces between the different layers of polymers. A finite element method based on a pseudoconcentration function is developed to calculate these fluid interfaces. Numerical results are presented for the coextrusion of up to five fluids. In the second part of the paper the above strategy is slightly modified to simulate the film-casting process. In this case a polymer is stretched (with a draw velocity UL) at the exit of the die in order to produce a very thin layer of polymer that is cooled in contact with a chill roll. Only one polymer-air interface has to be computed. The draw ratio is defined as Dr = UL/U , where U is the mean velocity of the polymer at the exit of the die. As the draw ratio is increased, instabilities appear and numerical results put in evidence the draw resonance phenomenon.  相似文献   

18.
A numerical procedure for the prediction of fogging and defogging phenomena is presented. The simulation involves the solution of an air flow field along a cold solid surface, the evaluation of the unsteady conduction through the solid itself, and a model for the heat and mass transfer within the thin water layer on the fogged surface. A suite of routines for the unsteady simulation of the water layer evolution is coupled with an equal order finite element Navier Stokes solver and a finite volume conduction code. The procedure is fully independent of the numerical details of the solid and fluid domain solvers. Two different coupling approaches may be followed: A loose one, where the Navier Stokes solution is used only for a steady state estimate of the heat transfer coefficient, or a close one, where the Navier Stokes, conduction and water layer codes are iterated simultaneously. The latter is required for the problem of natural convection, where temperature (and thus the energy balance of the water layer) and flow field are coupled. The water layer is modelled as a collection of closely packed tiny droplets, leaving a portion of dry area among them. The effect of the contact angle is taken into account, and physical assumptions allow to define the local ratio between wet and dry surface for both the fogging and defogging process. As a case study, a comparison with experimental data for a complete fogging and defogging cycle of a glass lens in natural convection is presented.  相似文献   

19.
A dynamic multiscale simulation method has been used to study the nanoscale material removal processes for single crystals. The model simultaneously captures the atomistic mechanisms during material removal from the free surface and the long-range mobility of dislocations and their interactions without the computational cost of full atomistic simulations. The method also permits the simulation of system sizes that are approaching experimentally accessibly systems, albeit in 2D. Simulations are performed on single crystal aluminum to study the atomistic details of material removal, chip formation, surface evolution, and generation and propagation of dislocations for a wide range of tool speeds (20-800 m/s) at room temperature. The results from these simulations demonstrate the power of the developed method in capturing both long-range dislocation plasticity and short-range atomistic phenomena during tool advance. In addition, we have investigated the effect of the scratching depth during the material removal process. Fluctuations of scratching tangential force are related to dislocation generation events during the material removal process. A transition from dislocation generation and glides at lower tool speeds to localized amorphization at high tool speeds is found to give rise to an optimal tool speed for low cutting forces.  相似文献   

20.
应用各种数值计算方法及计算处理技术,编制程序实现了对弹体入水后爆炸问题全过程的数值模拟.其中弹体与水,爆轰产物气体与弹壳之间的相互作用通过流固耦合技术来描述;水面与空气、爆轰产物与水、空气之间的相互作用采用VOF方法(Volume-of-Fluid)来描述;采用了刚体-柔体转换、单元失效删除等计算技术以更高效、更好地模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号