首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene)2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.  相似文献   

2.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

3.
The mononuclear amidinate complexes [(η6‐cymene)‐RuCl( 1a )] ( 2 ) and [(η6‐C6H6)RuCl( 1b )] ( 3 ), with the trimethylsilyl‐ethinylamidinate ligands [Me3SiC≡CC(N‐c‐C6H11)2] ( 1a ) and[Me3SiC≡CC(N‐i‐C3H7)2] ( 1b ) were synthesized in high yields by salt metathesis. In addition, the related phosphane complexes[(η5‐C5H5)Ru(PPh3)( 1b )] ( 4a ) [(η5‐C5Me5)Ru(PPh3)( 1b )] ( 4b ), and [(η6‐C6H6)Ru(PPh3)( 1b )](BF4) ( 5 ‐BF4) were prepared by ligand exchange reactions. Investigations on the removal of the trimethyl‐silyl group using [Bu4N]F resulted in the isolation of [(η6‐C6H6)Ru(PPh3){(N‐i‐C3H7)2CC≡CH}](BF4) ( 6 ‐BF4) bearing a terminal alkynyl hydrogen atom, while 2 and 3 revealed to yield intricate reaction mixtures. Compounds 1a / b to 6 ‐BF4 were characterized by multinuclear NMR (1H, 13C, 31P) and IR spectroscopy and elemental analyses, including X‐ray diffraction analysis of 1b , 2 , and 3 .  相似文献   

4.
Dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene?=?C6H6; p iPrC6H4Me; C6Me6) and monomeric cyclopentadienyl complexes [(η5-Cp)Ru(PPh3)2Cl] (Cp?=?cyclopentadienyl) react with polypyridyl nitrogen ligands L1 (3-(pyridin-2-yl)-1H-1,2,4-triazole) and L2 (1,3-bis(di-2-pyridylaminomethyl)benzene) in methanol to afford cationic mononuclear compounds [(η6-arene)Ru(L1)Cl]+ (arene?=?C6H6, 1; p iPrC6H4Me, 2; C6Me6, 3), [(η6arene)Ru(L2)Cl]+ (arene?=?C6H6, 4; p iPrC6H4Me, 5; C6Me6, 6), [(η5-Cp)Ru(L1)(PPh3)]+ (7), and [(η5Cp)Ru(L2)(PPh3)]+ (8). All cationic mononuclear compounds were isolated as their hexafluorophosphate salts and characterized by elemental analyses, NMR, and IR spectroscopic methods and some representative complexes by UV-Vis spectroscopy. The solid state structures of two derivatives, [6]PF6 and [7]PF6, have been determined by the X-ray structure analysis.  相似文献   

5.
A novel, useful in situ synthesis for NHC nickel allyl halide complexes [Ni(NHC)(η3-allyl)(X)] starting from [Ni(CO)4], NHC and allyl halides is presented. The reaction of [Ni(CO)4] with (i) one equivalent of the corresponding NHC and (ii) with an excess of the corresponding allyl chloride at room temperature leads with elimination of carbon monoxide to complexes of the type [Ni(NHC)(η3-allyl)(X)]. This approach was used to synthesize the complexes [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 2 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 3 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Cl)] ( 4 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Br)] ( 5 ), [Ni(Me2ImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 6 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Cl)] ( 7 ). The complexes 1 to 7 were characterized using NMR and IR spectroscopy and elemental analysis, and the molecular structures are provided for 2 and 7 . The allyl nickel complexes 1 – 7 are stereochemically non-rigid in solution due to (i) NHC rotation about the nickel-carbon bond, (ii) allyl rotation about the Ni–η3-allyl axis and (iii) π–σ–π allyl isomerization processes. The allyl halide complexes can be methylated as was demonstrated by the methylation of a number of the complexes [Ni(NHC)(η3-allyl)(X)] with methylmagnesium chloride or methyllithium, which led to isolation of the complexes [Ni(Me2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 8 ), [Ni(tBu2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 9 ), [Ni(iPr2ImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 10 ), [Ni(iPr2Im)(η3-H2C -C (Me)-C H2)(Me)] ( 11 ), [Ni(iPr2Im)(η3-H2C -C (H)-C (Me)2)(Me)] ( 12 ), and [Ni(EtiPrImMe)(η3-H2C -C (Me)-C H2)(Me)] ( 13 ). These complexes were fully characterized including X-ray molecular structures for 10 and 11 .  相似文献   

6.
A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(NCPh)(SnCl3)2] (3) could be obtained for the para-cymene derivative with benzonitrile as additional ligand. By contrast, the analogous reaction with the benzene derivative leads to a salt composed of the cationic mono(trichlorostannyl) complex [(η6-C6H6)Ru(NCPh)2(SnCl3)]+ (5) and of the anionic tris(trichlorostannyl) complex [(η6-C6H6)Ru(SnCl3)3] (6). On the other hand, [(η6-PriC6H4Me)Ru(μ2-Cl)Cl]2 reacts with SnCl2 and hexamethylenetetramine hydrochloride or 18-crown-6 to give the anionic di(trichlorostannyl) complex [(η6-PriC6H4Me)Ru(SnCl3)2Cl] (4), isolated as the hexamethylenetetrammonium salt or the chloro-tin 18-crown-6 salt. The single-crystal X-ray structure analyses of 1, 2, [(CH2)6N4H][4], [(18-crown-6)SnCl][4] and [5][6] reveal for all complexes a pseudo-tetrahedral piano-stool geometry with ruthenium-tin bonds ranging from 2.56 (anionic complexes) to 2.60 Å (cationic complex).  相似文献   

7.
A structurally diverse range of lipophilic, cationic η6‐arene η5‐cyclopentadienyl (η5‐Cp*) full‐sandwich complexes of ruthenium(II) have been prepared and structurally characterized by Fourier‐transform IR and NMR spectroscopy, electrospray mass spectrometry, and elemental microanalyses. Computational experiments incorporating the Hartree–Fock theory and the second‐order Møller–Plesset perturbation theory predict each complex to possess a uniform δ+ electrostatic potential, with the cationic charge of the [RuCp*]+ moiety completely delocalizing throughout the molecular structure of each metallocene. In vitro cytotoxicity studies demonstrate these delocalized lipophilic cations to be potent growth inhibitors of eleven unique tumorigenic cell lines, while exhibiting significantly lower levels of toxicity towards both a normal human fibroblast and a mouse macrophage cell line. Single‐crystal X‐ray structural determinations are additionally reported for five complexes, [Ru(η6‐C6H5(CH2)2CH3)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C6H5CO2CH2CH3)(η5‐C5(CH3)5)]BF4, [Ru(η6‐C10H8)(η5‐C5(CH3)5)]BPh4, [Ru(η6‐C14H10)(η5‐C5(CH3)5)]BPh4, and [Ru(η6‐C16H10)(η5‐C5(CH3)5)]BPh4.  相似文献   

8.
The molecular structure of the previously reported compound [Mo(CO)3(η6-P3C3But3)] has been determined by a single-crystal X-ray diffraction study. Syntheses and molecular structures are also described for the structurally related compounds [Mo(CO)3(η5-P3C3But3)(Me)(Bun)], [Mo(CO)3(η5-P3C3But3)(H)(Bun)] and [Mo(CO)3(η4-P3C3But3(Me)(Bun)(H)(O)Li(THF)3]. Density functional calculations at the B3LYP/cc-pVDZ(-PP) and BP86/cc-pVDZ(-PP) levels have been carried out on the above complexes and the nature of the bonding between the different rings and molybdenum is discussed. 31P NMR spectroscopic evidence is presented for the existence of the novel complex [Mo(CO)3(η6-P3C3But3)PtCl2(PEt3)] in which the triphosphabenzene ring acts as an overall 8-electron donor to the two metal centres.  相似文献   

9.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

10.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

11.
Treatment of [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(COD) (1) with phosphites, phosphines, amines or N-heterocyclic carbene in THF afforded the COD displacement complexes [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[P(OEt)3]2 (2), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[PPh2(OEt)]2 (3), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[NH2CH2CH2Pri]2 (4), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)2 (5), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru (η2-NH2CH2CH2NH2) (6), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[η2-NH(CH3)CH2CH2NH(CH3)] (7) or [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[NHC]2 (8, NHC = 1,3,4,5-tetramethylimidazol-2-yilidene), respectively. Ruthenium-amine complexes were much more labile than 1. Upon exposure to moisture, 5 was converted into [{η5:σ-Me2C(C5H4)(C2B10H10)}Ru(μ-H2O)]2 (9). Reactions of 5 with PR3 (R = PPh3, Cy), TMEDA (TMEDA = N,N,N′,N′-tetramethylethylenediamine) and CH3CN afforded the corresponding amine replacement products[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)(PPh3) (10), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)(PCy3) (11), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(TMEDA) (12) and [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2 (13). These results indicated that the steric factor dominated these substitution reactions. The electrochemical studies showed that the electron richness of the Ru atom decreased in the order L2Ru(NHC)2 > L2Ru(amine)2 > L2Ru(NCMe)2 > L2Ru(P)2. All of these complexes were fully characterized by various spectroscopic techniques and elemental analyses. The molecular structures of 2, 3, 5-10, 12 and 13 were further confirmed by single-crystal X-ray analyses.  相似文献   

12.
Half-sandwich complexes of formula [(ηn-ring)MClL]PF6 [L = (S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-isopropyloxazoline; (ηn-ring)M = (η5-C5Me5)Rh; (η5-C5Me5)Ir; (η6-p-MeC6H4iPr)Ru; (η6-p-MeC6H4iPr)Os] have been prepared and spectroscopically characterised. The molecular structures of the rhodium and iridium compounds have been determined by X-ray crystallography. The related solvate complexes [(η5-C5Me5)ML(Me2CO)]2+ (M = Rh, Ir) are active catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene.  相似文献   

13.
The facile synthesis of a stable and isolable compound with a fluoroalkynyl group, M−C≡CF, is reported. Reaction of [Ru(C≡CH)(η5‐C5Me5)(dppe)] with an electrophilic fluorinating agent (NFSI) results in the formation of the fluorovinylidene complex [Ru(=C=CHF)(η5‐C5Me5)(dppe)][N(SO2Ph)2]. Subsequent deprotonation with LiN(SiMe3)2 affords the fluoroalkynyl complex [Ru(C≡CF)(η5‐C5Me5)(dppe)]. In marked contrast to the rare and highly reactive examples of fluoroalkynes that have been reported previously, this compound can be readily isolated and structurally characterized. This has allowed the structure and bonding in the CCF motif to be explored. Further electrophilic fluorination of this species yields the difluorovinylidene complex [Ru(C=CF2)(η5‐C5Me5)(dppe)][N(SO2Ph)2].  相似文献   

14.
The diastereoselective κ2-P,N-coordination of a chiral tricyclic β-iminophosphine ligand to the half-sandwich ruthenium(II) fragments [RuCl(η6-arene)]+ (arene = C6H6, p-cymene, 1,3,5-C6H3Me3, C6Me6), [Ru(η6-p-cymene)(NCMe)]2+ and [Ru(η5-C5H5)(NCMe)]+ is described. The structures of the resulting mono- and dicationic cymene derivatives have been confirmed by X-ray crystallography. Studies on the catalytic activity of these Ru(II) compounds in Diels–Alder cycloaddition processes are also reported.  相似文献   

15.
The new cationic mononuclear complexes [(η6-arene)Ru(Ph-BIAN)Cl]BF46-arene = benzene (1), p-cymene (2)], [(η5-C5H5)Ru(Ph-BIAN)PPh3]BF4 (3) and [(η5-C5Me5)M(Ph-BIAN)Cl]BF4 [M = Rh (4), Ir (5)] incorporating 1,2-bis(phenylimino)acenaphthene (Ph-BIAN) are reported. The complexes have been fully characterized by analytical and spectral (IR, NMR, FAB-MS, electronic and emission) studies. The molecular structure of the representative iridium complex [(η5-C5Me5)Ir(Ph-BIAN)Cl]BF4 has been determined crystallographically. Complexes 15 effectively catalyze the reduction of terephthaldehyde in the presence of HCOOH/CH3COONa in water under aerobic conditions and, among these complexes the rhodium complex [(η5-C5Me5)Rh(Ph-BIAN)Cl]BF4 (4) displays the most effective catalytic activity.  相似文献   

16.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

17.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

18.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

19.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

20.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号