首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Deaerated 5 M NaCl solution is irradiated in the presence of UO2 pellets with α-radiation from238Pu. Experiments are conducted with238Pu doped pellets and others with238Pu dissolved in the brine. The radiolysis products and yields of mobilized U and Pu from the oxidative dissolution of UO2 are determined. Results found for radiolysis products and for the oxidation/dissolution of pellets immersed in Pu containing brine are similar to results for Pu doped pellets, where the radiation chemical processes occur only in the liquid layer of some 10 σm thickness adjacent to the pellet. The yield of radiolysis products is comparable to earlier results, that of mobilized U from the pellets is < 1% of the total amount of oxidized species. Thus, the radiation chemical yield (G-value) for mobilized hexavalent U is < 0.01 ions/100 eV. In spite of the low radiation yield for the corrosion, the rate of UO2dissolution is higher than expected for the concentrations of long-lived oxidizing radiolysis compounds found in the solutions.  相似文献   

2.
Summary The present paper describes a new analytical method for determining the 240Pu/239Pu isotopic ratio and 238Pu/239+240Pu α -activity ratio in seawater, both of which are important parameters for determining Pu sources in the ocean. Plutonium isotopes were preconcentrated from a large volume of seawater (4700-10800 liter) by solid phase extraction using MnO2-impregnated fibers and eluted into 3M HCl. After the elution, the Pu species of all oxidation states were converted to Pu(IV) using NaNO2, purified by solvent extraction using thenoyltrifluoroacetone (TTA)-benzene, and concentrated in 5 ml of 0.2M HNO2. The 240Pu/239Pu and 238Pu/239+240Pu ratios in the 5-ml final solution were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and α-spectrometry, respectively. A pg level of Pu, which was a sufficiently large amount for the determination, was obtained by the solid phase extraction. Through the redox conversion and solvent extraction, the Pu species, such as Pu(III), Pu(IV) and Pu(VI), were collected at a high recovery of 96±2% (n=3) despite the presence of large amounts of Mn, and interfering 238U (3.3 μg. l-1in seawater) was effectively removed with a decontamination factor of 1.7·107. The accuracy of the method for the 240Pu/239Pu ratio was verified using reference materials of seawater and a terrestrial soil sample. The present technique was applied to the determination of the 240Pu/239Pu and 238Pu/239+240Pu ratios in coastal and oceanic water.  相似文献   

3.
Determination of 238Pu in plutonium bearing fuels is required as a part of the chemical quality assurance of nuclear fuels. In addition, the determination of 238Pu is required in nuclear technology for many other applications, e.g., for developing isotope correlations and while using 238Pu as a spike (tracer) in isotope dilution α-spectrometry (IDAS). This determination usually involves the use of α-spectrometry on purified Pu sample. In view of the random errors associated with the counting statistics and the systematic errors due to (1) in-growth of 241Am in purified Pu sample and (2) tail contribution correction methodology in α-spectrometry, the precision and accuracy obtainable by α-spectrometry are limited. Thermal ionization mass spectrometry (TIMS) is generally used for the determination of different Pu isotopes other than 238Pu. This is due to the ubiquitous isobaric interference from 238U at 238Pu in TIMS. Recently, we have carried out studies on the formation of atomic and oxide ions of U and Pu by TIMS and developed a novel approach using interfering element correction methodology to account for the isobaric interference of 238U at 238Pu in TIMS. This methodology is based on the addition of 235U (enrichment >90 atom%) to Pu sample followed by the determination of 238U/235U atom ratio using UO+ ion and determination of Pu isotope ratios using Pu+ ion, from the same filament loading. The TIMS methodology was used for the determination of 238Pu in different Pu samples in U based nuclear fuels from PHWRs with 238Pu content about 0.2 atom%. The 238Pu determination was also carried out using α-spectrometry. This paper reports the results obtained by the two methods and presents the ments and shortcomings of the two approaches.  相似文献   

4.
The simultaneous determination of U(VI), Pu(VI), Pu(V) in 0.5–4.0 M NaOH has been elaborated by means of classical and differential pulse voltamperometry. U(VI) is determined with a dropping mercury electrode (DME) at the half-wave potential of E1/2=–0.89 V vs. Ag/AgCl reference electrode due to reduction to U(V). The limiting current or peak heights are proportional to uranium(VI) concentration in the range of 1.3.10–7–3·10–4 M U(VI). Deviation from proportionality is observed for higher concentrations due to polymerization of uranates. Pu(VI) and Pu(V) are determined with a platinum rotating electrode at E1/2=–0.02 V due to the reaction Pu(VI)+e»Pu(V) and with DME at E1/2=–1.1 V due to the reduction to Pu(III). The limiting currents of both Pu(VI) and Pu(V) are proportional to their concentrations in the range of 4·10–6–1.2·10–3 M Pu. The determination of U(VI), Pu(VI), Pu(V) is not interfered by the presence of the following salts: 2M NaNO3, 2M NaNO2, 1.5M NaAlO2, 0.5M NaF and ions of Mo(VI), W(VI), V(V), Cu(II). The presence of CrO 4 2– and FeO 2 ions disturbs the determination of U(VI) in 1–4M NaOH, however, contribution of the reaction Fe(III)+e»Fe(II) to uranium reduction peak can be calculated from the height of the second peak Fe(II)+2 e»Fe(0).  相似文献   

5.
Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry “planchette” sources. The best ablation results were obtained using a large spot size (200 μm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 μm s−1); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10% of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between 239+240Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038–0.132 and 0.00034–0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu = 0.013 [240Pu/239Pu] – 0.0001; r 2 = 0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified 239+240Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. 239+240Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.  相似文献   

6.
 Methodologies based on secondary ion mass spectrometry (SIMS) for isotopic measurements in nuclear forensic applications relevant to the age determination of Pu particles and isotopic composition of oxygen for geolocation assignment are described. For the age determination of Pu particles, a relative sensitivity factor (RSF) to correct for the different ionisation efficiencies of U and Pu, was obtained by analysing standard Pu materials with known ages. An RSF of 2.41±0.05 was obtained for PuO2 from measurements on samples with different Pu/U ratios. In a sample of known origin, using this RSF value, the age calculated from the 238Pu/234U and 240Pu/236U ratios agreed well with the reported age of 2.3 years. For geolocation assignment, a new approach based on the measurement of differences in the natural abundance of 18O and 16O isotopes and their ratio was developed. The instrumental mass discrimination of the 18O/16O ratio was determined using three O-isotope samples of different chemical composition. The measured precision (the standard error of 100 cycles/analysis) obtained for the oxygen isotopic measurement on the samples was typically ±1.1‰.  相似文献   

7.
Trace metallic impurity analysis by spectroscopic techniques is one of the important steps of chemical quality control of nuclear fuel materials. Depending on the burn-up and the storage time of the fuel, there is an accumulation of 241Am in plutonium based fuel materials due to β decay of 241Pu. In this paper, attempts were made to develop a method for separation of 241Am from 1.2 kg of analytical solid waste containing 70% U, 23% Pu, 5% Ag and 1–2% C as major constituents along with other minor constituents generated during trace metal assay of plutonium based fuel samples by d. c. arc carrier distillation atomic emission spectrometry. A combination of ion exchange, solvent extraction and precipitation methods were carried out to separate ~45 mg of 241Am as Am(NO3)3 from 15 L of the analytical waste solution. Dowex 1×4 ion exchange chromatographic method was used for separation of Pu whereas 30% TBP–kerosene was utilized for separation of U. Am was separated from other impurities by fluoride precipitation followed by conversion to nitrate. The recovery of Pu from ion exchange chromatographic separation step was ~93% while the cumulative recovery of Am after separation process was found to be ~90%.  相似文献   

8.
The kinetics of the reductive stripping of plutonium(IV) by dihydroxyurea (DHU) in 30% TBP/kerosene-HNO3 system was studied with a constant interfacial area cell. The stripping rate of plutonium(IV) increases with the increase of the stirring speed of two phases and the interfacial area. The activation energy of this process is 28.4 kJ/mol. Under the given experimental conditions, the mass transfer of Pu is not controlled by redox reaction, but controlled by molecular diffusion from the organic phase to organic film layer and from the aqueous film layer to aqueous phase. The rate equation of reductive stripping (process is controlled by diffusion) was obtained as: r 0 = k′[Pu(IV)]0[DHU]a 0.16[HNO3]a −0.34. The rate constant k′ is (5.0±0.4)·10−2 (mol/L)0.18·min−1 at 18.0°C.  相似文献   

9.
Purification of β-1,3-1,4-glucanase from the cell-free culture fluid of Bacillus subtilis GN156 by affinity chromatography of epoxy-activated sepharose 6B and ultrafiltration technique resulted in homogeneous J1 and partially purified pJ2 enzymes. The molecular weight and pI of J1 were 25 kDa and 3.5, respectively, while those for J2 were 90 kDa and 3.6, respectively. Both β-1,3-1,4-glucanase J1 and pJ2 had optimum pH values of 6–6.5 and an optimum temperature of 60°C. Both enzymes were not inhibited by Li2+ but were inhibited significantly by Ca2+, Cu2+, Mn2+ and Zn2+. However, J1 was slightly inhibited by Fe2+, while pJ2 was inhibited by Mg2+ as well. They were highly specific to only barley β-glucan. K m and V max values of J1 were 1.53 mg/ml and 8,511 μU/ml.min, respectively, while those for pJ2 were 4.36 mg/ml and 7,397 μU/ml.min, respectively. Degradation of barley β-1, 3-1,4-glucan resulted in four different oligosaccharides with 1,3 linkages triose, tetrose, pentose and a high molecular weight (HMW) with 1,3 linkage estimated from their mobilities. The quantitative degradation by the crude enzyme after of incubation yielded in descending order: triose, pentose and tetrose, while that of J1 in descending order yielded: pentose, triose and tetrose. The pJ2 showed low activity yielding a degradation pattern in descending order: pentose, triose, tetraose and a HMW polysaccharide.  相似文献   

10.
Anion-exchange porous sheets were prepared by radiation-induced graft polymerization and subsequent chemical modifications. A diethylamino (DEA) group as an anion-exchange group was introduced into the polymer chain grafted onto a porous sheet. The DEA group-introduced porous sheet was cut into disks 13 mm in diameter and 3 mm in thickness to fit an empty cylindrical cartridge (DEA cartridge). The DEA sheet had a DEA group of 3.4 mol/kg of the DEA-group-containing porous sheet and a linear velocity of 46 m/h at a permeation pressure of 0.1 MPa at 298 K. The adsorption capacity of the DEA cartridge for FeCl4 as a model ion in equilibrium with 1 g-Fe(III)/L in 10 M HCl was 0.17 mmol-Fe(III)/DEA cartridge. No Pu leakage during the permeation of 5 mL of 10 M HCl-0.1 M HNO3 containing Pu ionic species through the DEA cartridge was observed irrespective of the permeation rate ranging from 0.3 to 80 mL/min. A solution containing known amounts of 233U, 240Pu, and 241Am in 10 M HCl-0.1 M HNO3 was loaded onto the DEA cartridge. U and Pu were retained on the DEA cartridge, while Am was allowed to pass through the DEA cartridge. Subsequently, 7 M HNO3 and 1 M HCl as eluents were permeated to elute U and Pu from the DEA cartridge, respectively. The decontamination factor of U in a Pu fraction, defined by dividing the activity of U in the feed solution by that of U in the Pu fraction, was 2.7 × 105, which is desirable for the highly accurate ICP-MS determination of Pu for samples containing both U and Pu. The method using the DEA cartridge was validated by measuring isotopic compositions and quantities of U and Pu in a spent nuclear fuel sample by double-focusing magnetic sector ICP-MS.  相似文献   

11.
The extraction of Np(IV), Pu(IV) and U(VI) from aqueous hydrochloric acid into quaternary amines has been studied. The dependence of the distribution coefficient on amine concentration suggests that the actinide ions extracted are NpCl 6 2− PuCl 6 2− and UO2Cl 4 2− . This is further supported by the absorption spectra of the amine extracts of these actinide ions. Based on the extraction data obtained, a simple method for the separation of typical metal ions such as Cs, lanthanides and Zr from U(VI) and Pu(IV) is suggested.  相似文献   

12.
Both single stage and multi-stages experiments on stripping plutonium with N,N-dimethylhydroxylamine (DMHAN) as reductant with methylhydrozine (MMH) as supporting reductant were carried out. The effect of contact time, temperature, acidity, concentration of DMHAN on back-extraction rate of plutonium was investigated in the single stage experiment. The results demonstrated that the reaction of stripping Pu(IV) in the organic phase (30% TBP–kerosene) 1BF solutions by DMHAN exhibits excellent stripping efficiency. Under the given conditions, the back-extraction rate of plutonium reaches 90% within 2 min. Higher temperature, lower acidity and the increased concentration of DMHAN benifit the stripping reaction. The concentration profile of HNO3, uranium and plutonium were determined in a multi-stages mixer-settler after the steady state of the back-extraction, and the multi-stages results show that the plutonium can be separated effectively from uranium. The recovery of plutonium and uranium reach 99.995% or over 99.99% respectively. The separation factor of U from Pu (SFPu/U) is about 2 × 104.  相似文献   

13.
The sorption of Pu(IV), polymeric Pu(IV), Pu(V) and Pu(VI) from the 0.1 M NaClO4 solution onto multiwalled carbon nanotubes was investigated. The kinetic study of the sorption process have shown that the polymeric Pu(IV) has the highest sorption rate, while decrease of sorption rate for plutonium aqua-ions in the order Pu(VI) > Pu(IV) > Pu(V) was found. Strong dependence of sorption kinetics of ionic plutonium species on pH was shown, in contrast to polymeric species, that were shown to quantitatively sorb (99%) in the wide pH range (pH 2–10). Two different sorption mechanisms for ionic and polymeric plutonium species were proposed: on the bases of sorption isotherms chemisorptions of plutonium aqua-ions onto carbon nanotubes and through intermolecular interaction for the polymeric plutonium species was defined. Distribution coefficients of plutonium in various oxidation states were found to increase with pH, showing the highest values for polymeric plutonium sorption (K d  = 2.4 × 105 mL g−1 at pH = 6).  相似文献   

14.
Summary A procedure for the sequential radiochemical determination of plutonium, strontium, uranium and iron nuclides is described. The separation is carried out on a single anion exchange column. Pu(IV), U(VI) and Fe(III) are fixed on Bio Rad AG 1-X4 from 9 mol/l HCl, while the sample effluent is used for the determination of radio-strontium. Fe and U are eluted separately with 7 mol/l HNO3, and Pu(III) is eluted with 1.2 mol/l HCl containing hydrogen peroxide. Subsequently, Pu and U are electrolysed and counted by alpha spectrometry. Radiostrontium is purified by the nitrate method and counted in a low level beta proportional counter. Fe is purified by extraction and cation exchange and 55Fe is counted by X-ray spectrometry with a Si(Li) detector. The sample preparation and the application of the procedure to large samples, namely aerosols from 105 m3 of air, and monthly deposition samples from 0.6 m2 sampling area (10–100 l) are described. Chemical yields are for Pu 70±20, for Sr 80±15, for U 80–90, and for Fe 75±10%. As an example, the maximum airborne radionuclide concentrations determined with that procedure in fortnightly collected samples at Neuherberg after the Chernobyl accident were: 239+240Pu, 2.58; 238Pu, 1.40; 238U, 0.65; 234U, 0.67; 90Sr, 7600; and 55Fe, 990 Bqm–3.With appropriate changes in sample preparation, the procedure is applicable to other kinds of samples.  相似文献   

15.
An exoinulinase has been isolated, purified and characterised from a commercially available broth of Aspergillus ficuum. The enzyme was purified 4.2-fold in a 21% yield with a specific activity of 12,300 U mg−1(protein) after dialysis, ammonium sulphate fractionation and Sephacryl S-200 size exclusion and ion exchange chromatography. The molecular weight of this enzyme was estimated to be 63 kDa by SDS-PAGE. It exhibited a pH and temperature optima of 5.4 and 50 °C respectively and under such conditions the enzyme remained stable with 96% and 63.8% residual activity after incubation for 12 h and 72 h respectively. The respective K m and V max values were 4.75 mM and 833.3 μmol min−1 ml−1, respectively. Response surface methodological statistical analysis was evaluated for the maximal production of fructose from the hydrolysis of pure commercial chicory inulin. Incubation of the dialyzed crude exoinulinase (100 U/ml, 48 h, 50 °C, 150% inulin, pH 5.0) produced the highest amount of fructose (106.4 mg/ml) under static batch conditions. The purified exoinulinase was evaluated for fructose production and the highest amount (98 mg/ml) was produced after 12 h incubation at 50 °C, 150% inulin pH 5.0. The use of a crude exoinulinase preparation is economically desirable and the industrial production of fructose from inulin hydrolysis is biotechnologically feasible.  相似文献   

16.
Sorption of Pu(IV) from hydrochloric acid-oxalic acid solutions has been investigated using different anion exchangers, viz., Dowex-1X4, Amberlite XE-270 (MP) and Amberlyst A-26 (MP) for the recovery of plutonium from plutonium oxalate solutions. Distribution ratios of Pu(IV) for its sorption on these anion exchangers have been determined. The sorption of Pu(IV) from hydrochloric acid solutions decreases drastically in the presence of oxalic acid. However, addition of aluminium chloride enhances the sorption of plutonium in the presence of oxalic acid, indicating the feasibility of recovery of plutonium. Pu(IV) breakthrough capacities have been determined with a 10 ml resin bed of each of these anion exchangers at a flow rate of 60 ml per hour using a solution of Pu(IV) with the composition: 6M HCl+0.05M HNO3+0.1M H2C2O4+0.5M AlCl3+100 mg.l–1 Pu(IV). The 10% Pu(IV) breakthrough capacities for Dowex-1X4, Amberlite XE-270 (MP) and Amberlyst A-26 (MP) are 15.0, 8.9 and 6.2 g of Pu(IV) l–1 of resin respectively.  相似文献   

17.
The highest β-mannanase activity was produced by Penicillium occitanis Pol6 on flour of carob seed, whereas starch-containing medium gave lower enzymes titles. The low molecular weight enzyme was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography procedures. The purified β-mannanase (ManIII) has been identified as a glycoprotein (carbohydrate content 5%) with an apparent molecular mass of 18 kDa. It was active at 40 °C and pH 4.0. It was stable for 30 min at 70 °C and has a broad pH stability (2.0–12.0). ManIII showed K m, V max, and K cat values of 17.94 mg/ml, 93.52 U/mg, and 28.13 s−1 with locust bean gum as substrate, respectively. It was inhibited by mannose with a K I of 0.610−3 mg/ml. ManIII was activated by CuSO4 and CaCl2 (2.5 mM). However, in presence of 2.5 mM Co2+, its activity dropped to 60% of the initial activity. Both N-terminal and internal amino acid sequences of ManIII presented no homology with mannanases of glycosides hydrolases. During incubation with locust bean gum and Ivory nut mannan, the enzyme released mainly mannotetraose, mannotriose, and mannobiose.  相似文献   

18.
A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np, and U to +6 state in 1 M HCl media at 85° C with 30% NaBrO3 and separation from trivalent Am by collecting the latter on the first NdF3 coprecipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO2 at 85°C, while Np and U are kept oxidized with additional bromate in 50–70°C hot solution, thus separating Pu by collection on a second NdF3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCl3 and co-precipitated on a final source. The second procedure, which employs KMnO4 in 1 M HCl media at 60–85°C for oxidizing Pu, Np, and U, and separating from Am, produced MnO2 which is collected along with Am on the coprecipitated NdF3. This MnO2 is dissolved on the filter itself with 1 mL of acidified 1.5% H2O2 without any degradation of the -spectra. After evaporating the filtrate to destroy H2O2, Pu, Np, and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedurés are >99%. The decontamination factors are between 103 and 104. The precision and accuracy of measurements, as expressed by the relative standard deviation of replicate analyses, are within 5%. Absolute detection limits for a one-day count on a 600 mm2 detector at 32% counting efficiency and 450 mm2 detector at 27% counting efficiency are about 2.7×10–4 and 3.2×10–4 Bq, respectively. These procedures have been applied to the analysis of actinides in environmental samples.  相似文献   

19.
Four new perchlorate complexes of tetravalent actinides with dimethyl sulfoxide (DMSO) molecules (An4+ = Th, U, Np, Pu) are synthesized and studied. According to the X-ray diffraction data, compounds [Th(DMSO)9](ClO4)4 · 2CH3CN (I), [U(DMSO)8](ClO4)4 · CH3CN (II), [Np(DMSO)8](ClO4)4 · CH3CN (III), and [Pu(DMSO)8](ClO4)4 · CH3CN (IV) crystallize in the triclinic crystal system (space group P1). The crystals of compounds IIIV are isostructural. The absorption spectra of the complexes in the IR and visible regions are measured. All compounds exhibit a decrease in the frequencies of stretching vibrations ν(SO) over the spectrum of free DMSO, indicating the formation of the O-bonded complexes of An4+. The optical spectra of the crystalline compounds exhibit shifts of the bands of electronic f-f transitions of the An4+ ions relative to the hydrated ions: the bathochromic shifts for the U and Np complexes and the hypsochromic shift for the Pu complex. The first coordination sphere of the actinide atoms in the studied complexes is highly stable.  相似文献   

20.
A combined radiochemical separation method has been developed that enables the simultaneous determination of 234U, 235U, 238U, 237Np, 239,240Pu, 238Pu, 241Am, 242Cm, and 244Cm in medium and low level liquid radioactive wastes. The main steps of the method are sample destruction, co-precipitation on iron(II)-hydroxide and calcium-oxalate, separation by extraction chromatography using supported dipentyl-pentyl phosphonate (UTEVA) and supported N,N-octylphenyl-di-i-butylcarbamoylmethyl phosphine oxide with tributyl phosphate (TRU), and α source preparation. The key parameter of the method is the adjustment of the oxidation states of the actinoides before adding the sample onto the UTEVA column. It has been determined that (NH4)2S2O8 can be used for oxidation state adjustment resulting sufficient chemical yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号