首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly-guanylic acid (5') in CH3CN-H2O (97 : 3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.  相似文献   

2.
The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly- guanylic acid (5′) in CH3CN-H2O (97:3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.  相似文献   

3.
TheinteractionofquinonephotonucleasewithDNAhasbeenwidelystUdied.Anthraquinonederivatives,inparticularthatofanhraquinone-2-sulfonatehasbeenusedascleavingagentforduPlexDNA1-5.Howevef,directobservationofexcitedionpairsofbiomoleculesespeciallytheStabilizedradicalcationofbiomoleculeishamPeredbytheoverwhelmingtransientabsorPtionofhydrogenbondedradicalanionofquinone.lnthiswork,theinteractionofpolylG]withtripletanthraquinone-2-sulfonateinCH,CN-H:O(97f3)viaelectrontransferreactionhasbeenachieved…  相似文献   

4.
Anthraquinone-2-sulfonate (AQS) photosensitizes pyrimidine dimer splitting. Electron abstraction from the dimer is thought to induce dimer splitting, but direct evidence for the existence and intermediacy of dimer radical cations has been lacking. By employing photochemically induced dynamic nuclear polarization, we have found emission signals in the NMR spectra of dimers upon photolysis of dimers in the presence of anthraquinone-2-sulfonate. The two dimers employed were cis, syn-thymine dimer in which the N(1)-positions were linked by a three-carbon bridge and the N(3), N(3')-dimethyl derivative of that compound. The anthraquinone-2-sulfonate sensitized photochemically induced dynamic nuclear polarization spectrum of the methylated derivative exhibited an emission signal from the dimer-C(6) hydrogens. This result implied the existence of a dimer radical cation (mD+.) formed by electron abstraction by excited anthraquinone-2-sulfonate and nuclear spin sorting within a solvent caged radical ion pair [mD+. AQS-.]. Product pyrimidine photochemically induced dynamic nuclear polarization signals were also seen [enhanced absorption by C(6)-hydrogens and emission by C(5)-methyl groups]. Nuclear spin polarization in the product resulted from spin sorting in one or more of its precursors, including mD+. The results support the conclusion that dimer radical cations not only exist but are intermediates in the photosensitized splitting of pyrimidine dimers by anthraquinonesulfonate.  相似文献   

5.
A series of photo-CIDNP (chemically induced dynamic nuclear polarization) experiments were performed on pyrimidine monomers and dimers, using the electron-donor Nα-acetyltryptophan (AcTrp) as a photosensitizer. The CIDNP spectra give evidence for the existence of both the dimer radical anion, which is formed by electron transfer from the excited AcTrp* to the dimer, and its dissociation product, the monomer radical anion. The AcTrp spectra are completely different from those obtained with an oxidizing sensitizer like anthraquinone-2-sulfonate, because of different unpaired electron spin density distributions in pyrimidine radical anion and cation. In the spectra of the anti (1,3-dimethyluracil) dimers, polarization is detected that originates from a spin-sorting process in the dimer radical pair, pointing to a relatively long lifetime of the dimer radical anions involved. Although the dimer radical anions of the 1,1′-trimethylene-bridged pyrimidines may have a relatively long lifetime as well, their protons have only very weak hyperfine interaction, which explains why no polarization originating from the dimer radical pair is detected. In the spectra of the bridged pyrimidines, polarized dimer protons are observed as a result of spin sorting in the monomer radical pair, from which it follows that the dissociation of dimer radical anion into monomer radical anion is reversible. A study of CIDNP intensities as a function of pH shows that a pH between 3 and 4 is optimal for observing monomer polarization that originates from spin-sorting in the monomer radical pair. At higher pH the geminate recombination polarization is partly cancelled by escape polarization arising in the same product.  相似文献   

6.
A new calix[4]pyrrole-based macrocycle, meso-tetramethyl-tetrakis{4-[2-(ethylthio)ethoxy]phenyl}calix[4]pyrrole, 7, has been synthesized and fully characterized. Unlike other calixpyrrole derivatives that show selective interaction with anions, calixpyrrole 7 described in the present work forms stable complexes with both metal cations and anions. The thermodynamics of complexation of this ditopic calixpyrrole derivative with metal cations (Hg2+ and Ag+) and the fluoride anion in nonaqueous solutions have been determined by titration calorimetry, and the host-guest composition has been investigated by using conductance measurements at 298.15 K. 1H NMR studies provide clear evidence about the sites of complexation of 7 with the ionic species, which show that the NH groups are taking part in the complexation of this ligand with the fluoride anion while the sulfur donor atoms are responsible for the interaction with metal cations. Using the present data on 7 and structurally related analogues (1-6), the complexation behavior is discussed comparatively from the thermodynamic point of view. Possessing four sulfur-containing pendent arms, 7 displays an enhanced hosting ability for Hg2+ in acetonitrile. As compared with 1, the calixpyrrole derivative, 7, shows a unique interaction with fluoride among the anions investigated in acetonitrile and dimethyl sulfoxide. As far as the fluoride complex is concerned, the medium effect is assessed in terms of the thermodynamics of the transfer of reactants and product from acetonitrile (reference solvent) to dimethyl sulfoxide.  相似文献   

7.
It is demonstrated by cyclovoltammetry and ESR spectroscopy that N,N,N,'N,'-tetramethyl; tetraethgl, tetra-n-propyl, tetra-n-butyl-p-phenylenediamine and tetraethyl, tetra-n-propyl-p-benzidine undergo deprotonat ion and two consecutive single electron transfer step CE reaction at electrode in aqueous acetonitrile with the corresponding radical cations as the intermediate. The bivalent cations produced at the electrode react not only with hydroxyl anion in the medium to give quinone but also with the N-alkyl-p-phenylene-diamines or benzidines to produce the corresponding radical cations.  相似文献   

8.
Abstract— The photodestruction of purine free base used as a model for the purine bases in DNA has been studied in order to better understand the effect of UV light on these molecules. Photodestruction yields have been determined in glassy aqueous solutions at 77 K and at room temperature at different pH's. The yield decreases in the order of 0.04, 0.01, 0.001 in 8 M NaOH, 8 M NaCIO4 and 6 M H3PO4, respectively, while at room temperature the highest destruction yield is 0.005 for the unbuffered neutral solution. These yields have been determined by measuring the initial decrease in the purine absorption maximum as a function of irradiation time. During the illumination stable photoproducts, as well as reactive intermediates, such as trapped electrons, radical anions and cations, are formed and have been characterized from their absorption spectra. The addition of triplet quenchers and an electron scavenger resulted in a decrease in the yield, implying the participation of the purine triplet state and a radical anion in the reactions leading to the photodestruction of purine.  相似文献   

9.
Laser flash photolysis has been used to determine the kinetics of cytochrome c reduction by chlorophyll triplet state in negatively-charged lipid bilayer vesicles, as mediated by quinones. Large synergistic enhancements in the yield of reduced cytochrome were obtained using a pair of quinones, one of which was lipophilic (e.g. benzoquinone, 2,6-di-f-butylbenzoquinone) and the other of which was hydrophilic (e.g. l,2-naphthoquinone-4-sulfonate). The mechanism was shown to involve initial quenching of the triplet by the membrane-associated quinone to form chlorophyll cation radical and quinone anion radical. An interquinone electron transfer process followed this reaction, which occurred at the membrane-water interface, and greatly facilitated electron transport from within the bilayer to the aqueous phase. This process formed the basis of the synergistic effect. Cytochrome c reduction occurred in the water phase by reaction with the anion radical of the hydrophilic quinone. Finally, the reduced cytochrome was reoxidized by a slow reaction with chlorophyll cation radical. Under the most favorable conditions, we estimate that the quantum yield of conversion of triplet quenching events to reduction of cytochrome approached unity. The lifetime of the reduced protein and oxidized chlorophyll could be as long as 140 ms, under the best conditions. This system has properties which are thus quite favorable for solar energy conversion in a biomimetic process.  相似文献   

10.
Time-resolved infrared spectroscopy (TRIR) and density functional theory (DFT) calculations were used to directly observe and assign the vibrational spectra of the triplet states of visnagin and khellin, and to investigate their electron-transfer chemistry. The TRIR spectra of triplet visnagin and triplet khellin, and of their radical cations and anions, were obtained upon 266 nm laser flash photolysis in acetonitrile and in deuterated acetonitrile. The radical cations were observed in the presence of chloranil, and the radical anions were formed in the presence of NaI and KSCN. The TRIR spectra are in good agreement with the calculated vibrational spectra. We did not observe the related neutral radicals by TRIR spectroscopy upon laser flash photolysis (LFP) of khellin in the presence of hydroquinone, but we found evidence for the formation of semiquinone and neutral visnagin radicals upon LFP of visnagin and hydroquinone.  相似文献   

11.
The mechanism for the photo-induced oxidation of the tetramethylammonium salt of 2-(phenylthio)acetic acid was elucidated. The photosensitizer was the benzophenone triplet in acetonitrile solutions. Time-resolved absorption spectra and kinetics were used to follow the intermediates which included the triplet of benzophenone, the ketyl radical of benzophenone, and an ion pair consisting of a radical anion of benzophenone and a tetramethylammonium cation. Rate constants for the growth and decay of the transients were determined along with the quantum yields of the transients. The intermediacy of other radicals was inferred by the products observed following steady-state photolysis. Quantum yields were also determined for photoproducts resulting from the steady-state irradiation. The mechanism was proposed that rationalized the quantitative observations. Of particular note was how the nature of the counter ion effected the secondary reactions of the radicals and the radical ions.  相似文献   

12.
The triplet state of benzophenone was quenched by the tetrabutylammonium salt of (phenylthio)acetic acid in acetonitrile solutions. The quenching event, following laser flash photolysis, resulted in the formation of a transient ion pair consisting of the benzophenone radical anion and the tetrabutylammonium cation. Subsequently this ion pair decays with the quaternary ammonium cation undergoing a Hofmann elimination to form butane-1 and tributylamine, which were detected in steady-state irradiation. This appears to be the first report of an ion pair consisting of a benzophenone radical anion and an organic cation (nonradical), in addition to the first report of a photoinduced Hofmann elimination in quaternary ammonium ions.  相似文献   

13.
The photochemistry and photophysics of several psoralens and coumarins have been examined in human serum albumin (HSA) complexes and dimyristoylphosphatidylcholine (DMPC) vesicles. Fluorescence spectroscopy indicates that there are multiple binding sites with polarities that are intermediate between those of acetonitrile and water for the substrates complexed to HSA. In the case of the 6,7-dimethoxycoumarin-HSA complex, laser flash photolysis experiments provide evidence for the formation of radical cation in addition to triplet. Radical cations are not detected for other coumarin-HSA complexes, either due to a lower yield of formation or to rapid reaction of an initial radical cation with adjacent amino acids. Fluorescence spectra for coumarins indicate that they are primarily solubilized in the polar headgroup region in DMPC vesicles. Consistent with this, radical cations generated by photoionization are detected in transient experiments. For dimethoxycoumarins the radical cation is long-lived, indicating rapid exit from the vesicle and decay in the aqueous phase. However, 4,5',8-trimethylpsoralen and 7-ethoxy-4-hexadecylcoumarin radical cations are much shorter-lived, presumably due to rapid decay by electron recombination in the vesicle. The results for both HSA complexes and vesicles indicate that radical ions may play a role in psoralen and coumarin photochemistry in a cellular environment.  相似文献   

14.
Introduction ElectrontransferoxidationofDNAbytripletartifi cialphotonucleaserevealsabrightprospectofitsappli cationinbiologyandmedicine.Bothmolecularorbital calculationandlaserexperimentshaveindicatedthat thehomoguaninesequenceshouldbethefinallocaliza tio…  相似文献   

15.
The flash photolysis of purine in acetonitrile and in water at different pH was studied. The transients produced on flash excitation of degassed aqueous solutions have been identified as the triplet excited state, the hydrated electron, a purine radical cation and radical anion on the basis of quenching experiments and comparison to transients observed in low temperature photolysis.  相似文献   

16.
Measurements of laser-pulse-induced transient optical absorptions and transient electrical and conductance reveal that excitation of 4-N,N-dimethylaminobenzonitrile and related compounds in acetonitrile or water at 308 nm leads to formation of radical cations of the solutes. In acetonitrile the cations are formed in a single-photon process via a singlet state solute-solvent exciplex, whereas in water they are formed mainly by a biphotonic process. It follows from the transient absorptions of the compounds in cyclohexane, 1,4-dioxane and acetonitrile that the solutes in their lowest electronic triplet state do not form exciplexes with these solvents.  相似文献   

17.
The photochemical and electrochemical properties of four chlorin-C60 or porphyrin-C60 dyads having the same short spacer between the macrocycle and the fullerene are examined. In contrast with all the previous results on porphyrin-fullerene dyads, the photoexcitation of a zinc chlorin-C60 dyad results in an unusually long-lived radical ion pair which decays via first-order kinetics with a decay rate constant of 9.1 x 10(3) x s(-1). This value is 2-6 orders of magnitude smaller than values reported for all other porphyrin or chlorin donor-acceptor of the molecule dyad systems. The formation of radical cations of the donor part and the radical anion of the acceptor part was also confirmed by ESR measurements under photoirradiation at low temperature. The photoexcitation of other dyads (free-base chlorin-C60, zinc porphyrin-C60, and free-base porphyrin-C60 dyads) results in formation of the ion pairs which decay quickly to the triplet excited states of the chlorin or porphyrin moiety via the higher lying radical ion pair states as is expected from the redox potentials.  相似文献   

18.
The 2-methyl-1,4-naphthoquinone (MQ) sensitized photooxidation of nucleic acid derivatives has been studied by laser flash photolysis and steady state methods. Thymine and thymidine, as well as other DNA model compounds, quench triplet MQ by electron transfer to give MQ radical anions and pyrimidine or purine radical cations. Although the pyrimidine radical cations cannot be directly observed by flash photolysis, the addition of N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) results in the formation of the TMPD radical cation via scavenging of the pyrimidine radical cation. The photooxidation products for thymine and thymidine are shown to result from subsequent chemical reactions of the radical cations in oxygenated aqueous solution. The quantum yield for substrate loss at limiting substrate concentrations is 0.38 for thymine and 0.66 for thymidine. The chemistry of the radical cations involves hydration by water leading to C(6)-OH adduct radicals of the pyrimidine and deprotonation from the N(1) position in thymine and the C(5) methyl group for thymidine. Superoxide ions produced via quenching of the quinone radical anion with oxygen appear to be involved in the formation of thymine and thymidine hydroperoxides and in the reaction with N(1)-thyminyl radicals to regenerate thymine. The effects of pH were examined in the range pH 5-8 in both the presence and absence of superoxide dismutase. Initial C(6)-OH thymine adducts are suggested to dehydrate to give N(1)-thyminyl radicals.  相似文献   

19.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

20.
The kinetics of quenching of the triplet state of chloranyl (CA) by 1,2,3,4-tetrachlorodibenzo-p-dioxine (TCD) in benzene and acetonitrile was studied by nanosecond laser flash photolysis. The reaction proceedsvia electron transfer (ET) with the rate constants of 1.5·109 and 3.7·109 L mol?1 s?1, respectively. In benzen ET results in the formation of short-lived triplet radical ion pairs (lifetime 100 ns). In acetonitrile, relatively long-lived (lifetime ≥10 μs) radical anion CA.? and radical cation TCD.? are formed and decay due to bimolecular reactions in the bulk of the solvent accompanied by the consumption of TCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号