首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Reactions of SnF2and SbF3with TaF5and TaCl5in acetonitrile and dimethyl sulfoxide were studied by 19F and 119Sn NMR. It was found that SnF2and SbF3behave as fluorine donors for tantalum(V). The anionic and cationic tantalum fluorochloride complexes form in acetonitrile, while [TaF6]predominates in dimethyl sulfoxide. Tin(II) occurs in solution in the form of fluorine-containing polymeric cations.  相似文献   

2.
The reaction of the Bispyridyl Isoindole (BPI) type ligands L1 and L2 (L1 = 1,3-Bis(2-(4-tert-butylpyridyl)imino) isoindole, L2 = 1,3-Bis(2-(5-bromo)imino)-5,6-dimethylisoindole) with [Ru(μ-Cl)2(cod)]x in presence of triethylamine using coordinating solvents like acetonitrile, dimethyl sulfoxide or pyridine cleanly gave the complexes [{BPI(L1,L2)}RuII(Cl)(S)2] (L1: S = acetonitrile (1), dimethyl sulfoxide (2), pyridine (3); L2: S = acetonitrile (4), dimethyl sulfoxide (5), pyridine (6)). In these complexes the BPI ligands meridionally coordinated to the ruthenium center as established by X-ray diffraction for complexes 3 and 6. The catalytic activity in the direct ATRP (Atom Transfer Radical Polymerization) of styrene was tested for complexes 1-6.  相似文献   

3.
Bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complexes, RuL2(DMSO)2, were synthesized by the reaction of dichlorotetrakis(dimethyl sulfoxide)ruthenium(II) with the sodium salts of 5-hydroxyflavone, 5-hydroxy-4′-methoxyflavone and 5-hydroxy-3′,4′,5′,7-tetramethoxyflavone, ( L ). The complexation was followed by 1H nmr spectroscopy. The 1:1 kinetically favoured tris(dimethyl sulfoxide)chloroflavonatoruthenium(II) complexes, RuLCl(DMSO)3, were initially formed and then transformed into the thermodynamically more stable ones. Each one of these complexes, by reacting with another equivalent of lig-and L, also gave rise to a mixture of 1:2 kinetic species, from which the 1:2 thermodynamically more stable bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complexes, RuL2(DMSO)2, were formed. The complexes were characterized by extensive studies involving 1H, 13C nuclear magnetic resonance, infrared and ultraviolet-visible spectroscopy, mass spectrometry, cyclic voltammetry and elemental analysis. Such 1:2 complexes exhibited properties of two nonequivalent flavonate ligands and also of two non-equivalent dimethyl sulfoxide ligands; one of these dimethyl sulfoxide ligands is considered to be S-bonded and the other O-bonded. Also two quasireversible one-electron redox steps were observed at 0.53 to 0.57 and 0.44 to 0.41 V (vs Saturated Calomel Electrode). The spectroscopic results obtained allow for the discussion of stereochemistry of each bis(dimethyl sulfoxide)bis(flavonato)ruthenium(II) complex and to postulate its possible structure as one corresponding to the more anisochronous species.  相似文献   

4.
Antimony(m) chlorofluoride complexes M2SbCl3F2 (M = Rb, Cs, or NH4) were studied by the121,123Sb NQR method. A temperature range (77–285 K) with anomalous change in the NQR parameters and a second-order phase transition at 250–280 K for (NH4)2SbCl3F2 were found.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 382–385, February, 1996  相似文献   

5.
Experimental data on electron absorption spectra (EASs) and the kinetics of substitution of Co2+ for the central Cd2+ ion in rhodoporphyrin complexes (CdRodP) in the reaction with CoCl2 in acetonitrile (AN) and ZnCl2 in dimethyl sulfoxide (DMSO) and the substitution of Zn2+ for Cd2+ in pyrroporphyrin complexes (CdPyrP) in the reaction with ZnCl2 in DMSO are reported and discussed. The evolution of EASs in the reaction of metal-ligand exchange and the effective and true rate constants of the exchange reaction are reported. The activation energies and activation entropies are estimated.  相似文献   

6.
《Polyhedron》1999,18(8-9):1273-1278
A series of anionic chromium(III) thiocyanato complexes with metal crown ether cations have been prepared and characterized. These complexes have the form [Crown-M]2+[Cr(NCS)5(H2O)]2− and [Crown-M]3+[Cr(NCS)6]3−, where M=Na+, K+, or NH4+ and crown represents the crown ether. The crown ethers are 15-crown-5, B-15-crown-5, 18-crown-6, DB-18-crown-6, and DB-24-crown-8, where B- and DB- stand for benzo- and dibenzo-, respectively. The complexes are stable for at least 20 h in the dark in dimethylformamide(DMF) or in acetonitrile, and they release thiocyanate slowly, k=(0.71–2.67)×10−9 mol/(L s) in acetonitrile in the dark. Photoanation of thiocyanate was observed for the complexes in DMF and in acetonitrile. The quantum yields of thiocyanate release in DMF and in acetonitrile are reported. The quantum yields were in the range 0.05 to 0.52 mol einstein−1 and were solvent and wavelength dependent. In general, larger quantum yields were observed in DMF than in acetonitrile. The photoreaction mechanism is discussed.  相似文献   

7.
Complexation of dihydrogen phosphate by novel thiourea and urea receptors in acetonitrile and dimethyl sulfoxide was studied in detail by an integrated approach by using several methods (isothermal titration calorimetry, ESI‐MS, and 1H NMR and UV spectroscopy). Thermodynamic investigations into H2PO4? dimerisation, which is a process that has been frequently recognised, but rarely quantitatively described, were carried out as well. The corresponding equilibrium was taken into account in the anion‐binding studies, which enabled reliable determination of the complexation thermodynamic quantities. In both solvents the thiourea derivatives exhibited considerably higher binding affinities with respect to those containing the urea moiety. In acetonitrile, 1:1 and 2:1 (anion/receptor) complexes formed, whereas in dimethyl sulfoxide only the significantly less stable complexes of 1:1 stoichiometry were detected. The solvent effects on the thermodynamic parameters of dihydrogen phosphate dimerisation and complexation reactions are discussed.  相似文献   

8.
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO)2]SO4·H2O and [Cu(metSO)2]·H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.  相似文献   

9.
A new chemical species of bis(acetonitrile)bis(acetylacetonato)technetium(III), [Tc(acac)2(CH3CN)2]+, has been prepared by the reaction of tris(acetylacetonato)technetium(III) with acetonitrile in the presence of a strong acid, perchloric or hydrochloric acid. The reaction kinetics were followed by observing spectral change of Tc(acac)3 in the UV-visible region. The complex has been characterized by combination of elemental analyses, IR and UV-visible spectrophotometry, ion-exchange chromatography, and paper electrophoresis. Applicability of this substance to synthesize mixed-ligand technetium(III) complexes was discussed based on the solubility of this complex and the ease of substitution of the acetonitrile ligand.  相似文献   

10.
A dinucleating spacer 1,4-bis(salicylidene)phenylenediamine (SALPHEN) derived from 1,4-phenylenediamine and salicylaldehyde has been synthesized and characterized. The ruthenium(II) sulfoxide derivative of 2,2′-bipyridine or 1,10-phenanthroline on reaction with this ligand resulted in the formation of eight dinuclear complexes, which were characterized by elemental analyses, conductivity measurements, magnetic susceptibility, FT-IR, fast atom bombardment-mass spectra, electronic spectroscopy, 1H-NMR, 13C{1H}-NMR, and 2D-NMR spectra (HETCOR). The prepared complexes have two different formulations, [{trans-RuCl2(so)(N–N′)}2(μ-SALPHEN)] and [{cis-RuCl2(so)(N–N′)}2(μ-SALPHEN)], where so?=?dimethyl sulfoxide (DMSO)/tetramethylene sulfoxide (TMSO), N–N′?=?2,2′-bipyridine/1,10-phenanthroline, and SALPHEN?=?1,4-bis(salicylidene)phenylenediamine. Two moles of ruthenium sulfoxide bipyridine precursor were coordinated to the bidentate SALPHEN through nitrogen. All the complexes possess antibacterial activity against Escherichia coli in comparison to Chloramphenicol.  相似文献   

11.
The effect of the composition of an acetonitrile-dimethyl sulfoxide (AN-DMSO) mixed solvent on the stability of silver(I) complexes with 18-crown-6 ether (18C6) is studied by potentiometry. An insignificant increase in the stability of [Ag18C6]+ (0.34 log units) is observed on going from acetonitrile to dimethyl sulfoxide. The effect of solvation on the shift of complex formation equilibrium is considered.  相似文献   

12.
Synthesis and characterization of seven ruthenium(II) and ruthenium(III) complexes of sulfoxide with 2-aminobenzothiazole are reported. Three different formulations exist: [cis,cis,cis-RuCl2(SO)2(2-abtz)2] and [trans,trans,trans-RuCl2(SO)2(2-abtz)2] and [trans-RuCl4(SO)(2-abtz)] ? [X]+ (where SO?=?dimethyl sulfoxide (dmso) or tetramethylenesulfoxide (tmso); 2-abtz?=?2-aminobenzothiazole and [X]+?=?[H(abtz)]+, [Na+]. These complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility, FTIR, 1H NMR, 13C{1H} NMR and electronic spectroscopy. Some of the complexes were screened for their antibacterial activity and are found to be potent against the gram negative bacteria Escherichia coli.  相似文献   

13.
Reaction of two equivalents of the bulky 1,3-bis(2,6-diethylphenyl)thiourea ligand (L) with MX (being M = Cu+, Ag+; and X = Cl, Br, I) in acetonitrile afforded neutral complexes of the type [MXL2] [CuClL2].2CH3CN (1a); [CuBrL2].2CH3CN (1b); [CuIL2] (1c): [AgClL2] (2a); [AgBrL2] (2b) and [AgIL2] (2c). The two aromatic groups in free ligand were found to be trans with respect to the thiourea unit, which was a reason to link the ligand molecules via intermolecular hydrogen bonding. Intramolecular hydrogen bonding was observed in all metal complexes. The copper complexes 1a and 1b are acetonitrile solvated and show not only intra- but also intermolecular hydrogen bonding between the coordinated thiourea and the solvated acetonitrile molecules. Silver complexes reported here are the first examples of structurally characterized tricoordinated thiourea-stabilized monomeric silver(I) halides. Molecular docking studies were carried out to analyze the binding modes of the metal complexes inside the active site of the human insulin (HI) protein. Analysis of the docked conformations revealed that the electrostatic and aromatic interactions of the protein N-terminal residues (i.e., Phe and His) may assist in anchoring and stabilizing the metal complexes inside the active site. According to the results of docking studies, the silver complexes exhibited the strongest inhibitory capability against the HI protein, which possesses a deactivating group, directly bonded to silver. All compounds were fully characterized by elemental analysis, NMR spectroscopy, and molecular structures of the ligand, and five out of six metal complexes were also confirmed by single-crystal X-ray diffraction.  相似文献   

14.
The Cu(II) and Cu(I) complexes with 2-(3,5-diphenyl-1H-pyrazole-1-yl)-4,6-diphenylpyrimidine (L) of the composition CuLX2 (X = Cl, Br) and CuL(MeCN)Br are synthesized. According to X-ray diffraction data, the complexes have molecular structures. The molecules L are coordinated to the copper atom in bidentate-cyclic mode, i.e., through the N2 atom of pyrazole and N1 atom of pyrimidine rings. The coordination polyhedron of the Cu2+ ion in CuLX2 compounds is completed to a distorted tetrahedron with halide ions, that of the Cu+ ion in CuL(MeCN)Br compounds, with the bromide ion and the nitrogen atom of acetonitrile molecule. The CuLX2 complexes (X = Cl, Br) in combination with cocatalysts (methylaluminoxane and triisobutylaluminium) exhibit catalytic activity in ethylene polymerization.  相似文献   

15.
The electrochemical electron-transfer rate constants for the redox systems Fe(IV)L3+/Fe(III)L3 (L=N,N-disubstituted dithicarbamate ion) and Fe(III)L3/Fe(II)L3? with a variety of substituents were measured at a platinum electrode in acetonitrile with the galvanostatic double-pulse method. It is known that each of the Fe(III) complexes exists both in a highspin state 6A1 and a low-spin state 2T2 in equilibirium of which position is widely changed by a subtle change in substituent. The standard rate constants for Fe(IV)L3+/Fe(III)L3 were larger or smaller than those for Fe(III)L3/Fe(II)L3? according as the Fe(III)L3 complexes are predominantly low- or high-spin complexes. Since the Fe(IV) and Fe(II) complexes are low-and high-spin complexes respectively, these findings suggest that electrochemical electron-transfer reactions accompanied by a spin-state change are slower than those without it. Such spin-state effect on electrode reactions has rarely been discussed so far.  相似文献   

16.
Stable cationic complexes of the type [RuCO(PPh3)2(L)(RCN)]+[ClO4]? derived from acetonitrile and acrylonitrile have been synthesized. The bidentate ligands (LH) used are acetylacetone, benzoylacetone, dibenzoylmethane, trifluorothenoyl acetone and 8-hydroxyquinoline. The complexes have been characterized by elemental analysis, IR, conductivity, 1H and 31P NMR and ESCA studies, and possible stereochemistry has been established.  相似文献   

17.
Polarographic and spectrophotometric data show that tin(II) chloride is a weak electrolyte in dilute acetonitrile solutions. The dominant species, SnCl2, exists in a labile equilibrium with the ions SnCl+ and SnCl3- Oxidation and reduction of these ionic species is responsible for all observed polarographic plateaux. The dichloro—tin(II) molecule is shown to be a good acceptor species in acetonitrile solution, readily forming 1:1 complexes with ligands such as 4-picoline N-oxide.  相似文献   

18.
Treatment of [Fe(bipy)Cl4][bipy · H] (1) and [Fe(phen)Cl4][phen · H] (3) (where bipy is 2,2′-bipyridine and phen is 1,10-phenanthroline) with dimethyl sulfoxide in methanolic solution produced [Fe(bipy)Cl3(DMSO)] (2) and [Fe(phen)Cl3(DMSO)] (4) (where DMSO is dimethyl sulfoxide), respectively. The resulting complexes were characterized by elemental analysis, IR, UV–Vis and 1H NMR spectroscopies and by the X-ray diffraction method. These complexes are high spin with a spin multiplicity of 6.  相似文献   

19.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

20.
Reactions of SnF2 and SbF3 with POCl3 and PCl5 in acetonitrile were studied by 19F, 31P, and 119Sn NMR. Tetrahedral compounds POF2Cl and POF3 form in the reaction with POCl3. Interaction of SnF2 and SbF3 with PCl5 yields higher (in terms of fluorine) octahedral complexes [PF5 · MeCN] and [PF6]. In all cases, fluorine-free phosphorus compounds are found in the acetonitrile solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号