首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly oriented fiber-shaped J-aggregates of pseudoisocyanine (PIC) molecules were prepared by simply growing the aggregates in a narrow glass cell, which allows evaporation of the solution in one direction.  相似文献   

2.
The optical properties of reaction systems composed from a pseudoisocyanine (PIC) solution and dispersed layered silicates were studied using visible spectroscopy. Two series of reduced-charge montmorillonites were used as the silicate materials. Each series consisted of eight samples with different layer charges, which were prepared from one parent material. Observed trends were verified with another series of dioctahedral and trioctahedral smectites of different layer charges, structure, and origin. The layer charge density of the silicates significantly affected the aggregation of PIC cations. In addition to the formation of J-aggregates, dye spectral bleaching was also observed. Silicates with very low charge densities induced neither significant aggregation nor spectral bleaching of the dye. The highest levels of PIC J-aggregate formation were found in dispersions of the layered silicates with a medium surface charge. However, reversible spectral bleaching was also observed in some cases. PIC dye cations probably change their conformations during the adsorption process, due to the tension resulting from the large size of the cations and the relatively high charge density at the silicate surface. The bleached dye recovers, at least partially, with the rearrangement and redistribution of the dye cations over the time. In contrast, the presence of silicates with very high charge densities (synthetic taeniolite and fluorohectorite) led to the very fast and irreversible decomposition of the PIC. Perhaps, the tension in adsorbed dye cations, induced by the high charge density at the silicate surface, resulted in significant destabilization and a decomposition reaction of the chromophore.  相似文献   

3.
Herein we report an extraordinary three-photon absorption cross-section (sigma'3) enhancement in J-aggregates supramolecular systems. The much higher value of sigma'3 in PIC J-aggregate (2.5 x 10(-71) cm6 s2 ph(-2)) compared to typical values obtained in organic molecules (10(-80) cm6 s2 ph(-2)) is attributed to the strong molecular transition dipole moment coupling in the supramolecular assembly. Three-photon absorption of PIC J-aggregates and monomer aqueous solutions were measured using the well known open aperture Z-scan technique pumping with a 25 ps pulse laser-OPG system at 1720 nm. This novel result opens new expectations for applications of supramolecular systems in bioimaging and medicine.  相似文献   

4.
This is the first report of J-aggregate formation of a non-ionic bisazomethine dye in vapor deposited films; this dye allows us to prepare easily large homogeneous and very stable J-aggregate thin films and to investigate intrinsic properties of low-dimensional Frenkel excitons.  相似文献   

5.
The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates.  相似文献   

6.
The objective of this study was to investigate the spectral characteristics of tetracationic porphyrin dye (TMPyP), intercalated into films of three smectites. The smectites represented the specimens of high (Fluorohectorite; FHT), medium (Kunipia F montmorillonite; KF), and low layer charge (Laponite; LAP). Intercalation of TMPyP molecules was proven by XRD measurements. The molecular orientations of the dye cations were studied by means of linearly polarized ultraviolet-visible (UV-vis) and infrared (IR) spectroscopies. Both the UV-vis and the IR spectroscopy proved the anisotropic character of the films. The spectral analysis of the polarized UV-vis spectra and consequent calculations of tilting angles of the transition moments in the region of Soret band transitions were in the range of 25-35 degrees . The determined angles indicated that the molecular orientation of the dye cations was almost parallel to the surface of the silicates. Slightly higher values, determined for a FHT film, indicated either a slightly more tilted orientation of the dye cations or the change of molecular conformation after the intercalation of the dye. Quenching of TMPyP fluorescence was observed, resulting from the formation of bimolecular layer arrangements with sandwich-type assemblies of the dye molecules.  相似文献   

7.
We have investigated a pseudoisocyanine dye aqueous solution including nanometer-sized J-aggregates by combining optical trapping and two-photon fluorescence spectroscopy. By focusing an intense near-infrared laser into an 8 x 10(-3) M solution, the intense fluorescence from J-aggregates for a few to tens of seconds is observed intermittently, indicating that individual J-aggregates are trapped in and diffuse out from a focal spot. The peak position and full width at half-maximum of the J-band are different from each other. By measuring 171 J-aggregates, it was found that J-aggregates can be classified largely into two groups. The existence of two kinds of groups of J-aggregates could be attributed to the difference in the nucleation process, which is affected by the substrate. J-aggregates possessing a J-band of a narrower bandwidth in a shorter wavelength region are trapped for a longer period of time, indicating that highly ordered J-aggregates are trapped for a longer period of time because of their high polarizability.  相似文献   

8.
Bleaching of monomer and J-aggregate bands of pseudoisocyanine was observed using tunable excitation wavelengths. Both bleached bands decrease with (15 ± 3) ps. A residual J-band bleaching exists up to 1 ns. A new transient absorption in superposition with the J-band was round to consist of two bands with different time behaviour.  相似文献   

9.
The mechanical properties of polyamide-12/Cloisite 30B (PA12/C30B) nanocomposites prepared by melt compounding were studied as a function of clay volume fraction φ under various processing conditions. All measured mechanical characteristics, Young's modulus, yield stress, strain at break and stress at break, exhibit a transition at φp1%, identified with a percolation threshold. Also, the linear and non-linear mechanical properties appeared to depend on the degree of exfoliation of the structure, which can be tuned by the processing conditions. The three-phase Ji's theoretical model was used to predict Young's modulus as a function of clay concentration, focusing on the influence of the degree of exfoliation. Experimental yield stress data were fitted to Pukanszky's model and discussed in terms of PA12/C30B interfacial adhesion.  相似文献   

10.
11.
Single- and two-step fluorescence resonance energy transfer (FRET) was investigated between laser dyes rhodamine 123 (R123), rhodamine 610 (R610), and oxazine 4 (Ox4). The dye molecules played the role of molecular antennas and energy donors (ED, R123), energy acceptors (EA, Ox4), or both (R610). The dye cations were embedded in the films based on layered silicate laponite (Lap) with the thickness of several μm. Optically homogeneous films were prepared directly from dye/Lap colloids. Dye concentration in the films was high enough for FRET to occur but sufficiently low to prevent the formation of large amounts of molecular aggregates. The films were characterized by absorption and fluorescence spectroscopies, and their optical properties were compared with colloid precursors and dye aqueous solutions. The phenomenon of FRET was confirmed by means of steady-state and time-resolved fluorescence spectroscopies. Significant quenching of ED emission in favor of the luminescence from EA molecules was observed. FRET led to the decrease in the lifetimes of excited states of ED molecules. Molecular orientation of dye molecules was determined by polarized absorption and fluorescence spectroscopies. Almost parallel orientation with respect to silicate surface (~30°) was determined for all fluorescent species of the dyes. Theoretical model on relationship between anisotropy and molecular orientation of the fluorophores fits well with measured data. The analysis of anisotropy measurements confirmed the significant role of FRET in the phenomenon of light depolarization.  相似文献   

12.
This paper deals with the effect of different montmorillonite source clays, including pristine and organophilic montmorillonites, on the structure, morphology and properties of cellulose acetate (CA)/clay nanocomposites. In this study, the nanocomposites were prepared by melt extrusion in the presence of the environmentally friendly triethyl citrate plasticizer. The structure and morphology of the materials were analysed by X-ray diffraction and scattering (SAXS), X-ray microtomography and energy filtered transmission electron microscopy (EFTEM). SAXS and EFTEM results indicated that the nanocomposite morphologies were made up of tactoids together with exfoliated clay platelets in different proportions depending on the clay type. It can be concluded that well distributed clay tactoids and platelets can be achieved in CA nanocomposites prepared by melt extrusion and consequently property improvements can be found by using pristine or organophilic clays. In this case, the addition of a plasticizer, able to intercalate in the clay gallery, seems to be sufficient to promote the clay delamination mechanism under shearing inside the cellulose acetate matrix.  相似文献   

13.
The miscibility and structure in polypropylene/layered silicate nanocomposites is systematically investigated utilizing a maleic-anhydride grafted polypropylene with a low degree of functionalization acting as the compatibilizer. The morphology of the hybrids can be modified from phase separated to almost completely exfoliated in a controlled way by varying the ratio α of the compatibilizer to the organophilized clay; this ratio α is found to be the most important parameter in determining the final structure whereas exfoliated structures can be obtained for α values of 9 or higher. Furthermore, utilization of a “masterbatch” procedure can enhance the degree of exfoliation even for smaller values of α; in that case, polypropylene is essentially mixed with the already dispersed “hairy” platelets. Investigation of the thermal stability of the micro- and nanocomposites shows that high degree of exfoliation is vital in increasing the temperature that the polymer starts to degrade. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2683–2695, 2008  相似文献   

14.
The composition and structure of vermiculite samples modified successively with hydrochloric acid and chitosan are studied with the use of X-ray fluorescence and X-ray-diffraction analyses, as well as IR spectroscopy. The adsorption characteristics of the samples with respect to nitrogen and different dyes are determined, and the parameters of their porous structure are calculated. It is shown that the acid treatment of initial vermiculite drastically increases the content of silicon (in the form of amorphous silica), changes the layered structure of the silicate, and substantially enhances its specific surface area and pore volume.  相似文献   

15.
In order to elaborate organized two-dimensional arrangements of fluorescent dyes in host solid layered materials, rhodamine 6G (R6G) is encapsulated in supported thin films of laponite (Lap) clay. Clay films are elaborated by the spin-coating technique and their surface morphology is analyzed by scanning electron (SEM) and atomic force (AFM) microscopies. The internal order of the stacked clay layers is checked by X-ray diffraction technique (DRX). The thermostability of R6G in the Lap films is discussed on the basis of several thermogravimetric and calorimetric techniques (TG, DTA and DSC). The R6G adsorbed species in Lap films are characterized by absorption and fluorescence (steady-state and time-resolved) spectroscopies. Monomers, dimers and higher-order aggregates are identified for very low (<0.1%), moderate (1–25%) and high (>40% of the total cation exchange capacity, CEC, of the clay) dye content, respectively. Both non-fluorescence H-type and fluorescent J-type aggregates of R6G in Lap films are characterized.Absorption and fluorescence techniques with linearly polarized light are applied to evaluate the anisotropic photoresponse of R6G in Lap films, from which the preferential orientation of dye molecules with respect to the clay layers can be evaluated. The validity of the newly established fluorescence polarization is contrasted with the well-established absorption polarization method, and the emission spectroscopy with linearly polarized light can be applied to establish the preferential orientation of fluorophore molecular probes incorporated in any rigid and ordered 2D host materials, including monolayers and biological membranes.  相似文献   

16.
The relationship between nanostructure and properties in polysiloxane layered silicate nanocomposites is presented. Solvent uptake (swelling) in dispersed nanocomposites was dramatically decreased as compared to conventional composites, though intercalated nanocomposites and immiscible hybrids exhibited more conventional behavior. The swelling behavior is correlated to the amount of bound polymer (bound rubber) in the nanocomposites. Thermal analysis of the bound polymer chains showed an increase and broadening of the glass‐transition temperature and loss of the crystallization transition. Both modulus and solvent uptake could be related to the amount of bound polymer formed in the system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1595–1604, 2000  相似文献   

17.
The role of bis(2,4,6-trihydroxyphenyl)squaraine, Sq, in sensitizing large bandgap semiconductors has been investigated in the present study. The dye in its aggregate form readily interacts with the TiO2 colloids giving rise to a new charge transfer band in the red region. The apparent association constant for the dye aggregate and TiO2 colloid as determined from a Benesi-Hildebrand plot is 1600 M-1. Nanocrystalline semiconductor films prepared from TiO2, ZnO, and SnO2 colloids have been modified with Sq to probe the photosensitization effects. Both dye monomers and aggregates were found to participate in the charge injection process. An incident photon-to-photocurrent efficiency up to 0.7% has been observed.  相似文献   

18.
Nanocomposites were prepared from sodium montmorillonite (NaMMT) and organoclays (OMMT) with different particle sizes as a function of silicate content. Composite structure was characterized by various methods including X-ray diffraction (XRD), scanning electron microscopy (SEM) and rheology. Model calculations were carried out to estimate the thickness and yield stress of the interphase forming in the composites. The results proved the formation of an interphase, but the determination of interphase properties was hampered by several factors. First of all, the particle size of the filler changed quite considerably in PP/OMMT composites in spite of earlier observations and expectations. Particle characteristics changed even further when a relatively small amount (5 vol.%) of functionalized polymer (MAPP) was added to the composite. As a consequence, the estimation of the contact surface between the silicate and the polymer became extremely difficult. In spite of the uncertainties overall values of interphase properties were obtained using the results of all composites prepared. The prediction for the average thickness of the interphase is 0.23 μm and we obtained 51.2 MPa for interphase yield stress, but this estimate neglects the different interactions developing in composites containing the uncoated and the modified silicate, respectively.  相似文献   

19.
《Supramolecular Science》1998,5(3-4):343-347
Unusually sensitive wavelength dependence of hole-burning efficiency in oriented J-aggregates is explained by the hierarchical structure of one-dimensional J-aggregates proposed by us from the experimental results of the concentration dependence of the dichroic spectra.  相似文献   

20.
The poly(lactic acid) (PLA)/montmorillonite (MMT) composites were prepared by melt blending in an internal mixer. The effect of MMT and organically modified MMT (OMMT) addition on crystallization and mechanical preferences has been studied. The DSC results show that the crystallization ability of PLA is improved by MMT or OMMT. The addition of MMT and OMMT increase the crystallinity of PLA from 27.3 to 32.8%, and the cold crystallization temperature (TCC) of PLA decreases from 93.1 to 88.9°C with the MMT. However, the nucleating effect of MMT is better than that of OMMT due to the velvety surface resulted from the organic modification. The average size of the spherulites in PLA/MMT is smaller than that in PLA/OMMT. The addition of MMT or OMMT increases the tensile strength of PLA from 29.6 to 34.7 MPa and decrease the elongation at break of PLA. The modulus of PLA composites is enhanced rapidly from 338 to 660 MPa by the addition of MMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号