首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三相压电复合本构模型中的弧形界面裂纹   总被引:5,自引:0,他引:5  
深入研究了三相同心圆柱压电复合本构模型中的弧形绝缘界面裂纹问题。采用复势方法获得了该问题的级数形式的解答,并给出了应力、应变、电位移和电场强度等物理量在全场及界面上的分布,同时推导了裂尖处广义强度因子及裂面张开位移和裂面上电势差的表达式。具体计算表明该级数解答收敛迅速,同时显示出第三相混杂区的影响是不能忽略的。由于裂尖处应力奇异性为-1/2,则这种解答不会出现平面应变状态下界面裂纹裂尖处的振荡奇异性,从而不会产生违反物理实际的裂面相互嵌入现象,则该弹性解答也是建立了坚实的物理基础之上。  相似文献   

2.
The present paper investigates the problem of a conducting arc crack between a circular piezoelectric inclusion and an unbounded piezoelectric matrix. The original boundary value problem is reduced to a standard Riemann–Hilbert problem of vector form by means of analytical continuation. Explicit solutions for the stress singularities δ=−(1/2)±iε are obtained, closed form solutions for the field potentials are then derived through adopting a decoupling procedure. In addition, explicit expressions for the field component distributions in the whole field and along the circular interface are also obtained. Different from the interface insulating crack, stresses, strains, electric displacements and electric fields at the crack tips all exhibit oscillatory singularities. We also define a complex electro-elastic field concentration vector to characterize the singular fields near the crack tips and derive a simple expression for the energy release rate, which is always positive, in terms of the field concentration vector. The condition for the disappearance of the index ε is also discussed. When the index ε is zero, we obtain conventionally defined electro-elastic intensity factors. The examples demonstrate the physical behavior and the correctness of the obtained solution.  相似文献   

3.
The special mixed boundary value problem in which a debonded conducting rigid line inclusion is embedded at the interface of two piezoelectric half planes is solved analytically by employing the 8-D Stroh formalism. Different from existing interface insulating crack model and interface conducting rigid line inclusion model, the presently analyzed model is based on the assumption that all of the physical quantities, i.e., tractions, displacements, normal component of electric displacements and electric potential, are discontinuous across the interface defect. Explicit solutions for stress singularities at the tips of debonded conducting rigid line inclusion are obtained. Closed form solutions for the distribution of tractions on the interface, surface opening displacements and jump in electric potential on the debonded inclusion are also obtained, in addition real form solutions for these physical quantities are derived. Various forms of interface defect problems encountered in practice are solved within a unified framework and the stress singularities induced by those interface defects are discussed in detail. Particularly, we find that the analysis of interface cracks between the embedded electrode layer and piezoelectric ceramics can also be carried out within the unified framework.  相似文献   

4.
The behavior of a Mode-Ⅰinterface crack in piezoelectric materials was investigated under the assumptions that the effect of the crack surface overlapping very near the crack tips was negligible. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were expanded in a series of Jacobi polynomials. It is found that the stress and the electric displacement singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials. The solution of the present paper can be returned to the exact solution when the upper half plane material is the same as the lower half plane material.  相似文献   

5.
A new experimental technique for accelerated fatigue crack growth tests was recently developed (Du et al., 2001). The technique, which uses piezoelectric actuators, enables application of cyclic loading at frequencies several orders higher than that by mechanical loading. However, the validity of this technique relies on the equivalence between piezoelectric and mechanical loading. In this paper, the behavior of an interfacial crack between a piezoelectric material and an elastic material under in-plane electric loading is studied. The displacement mismatch along a bonded interface due to electric potential loading on the piezoelectric material is modeled by inserting an array of uniformly distributed dislocations along the interface. By means of Fourier transformation methods, the governing equations are converted to an integral equation, which is then converted to a standard Hilbert problem. A closed form solution for stresses, electric field, and electric displacements along the bonded interface is obtained. The results agree very well with those obtained from numerical simulations. The results show that the closed form solution is accurate not only for far field distributions of stresses and electric variables, but also for the asymptotic distributions near the crack tip. The solution also suggests the likelihood of domain switching in the piezoelectric material near the crack tip, a process that may influence the interfacial fracture resistance.  相似文献   

6.
热释电材料问题的通解与界面裂纹   总被引:3,自引:0,他引:3  
该文讨论了热释电材料中的热弹性问题的一般解,进而求解了共线界面裂纹问题.利用Stroh方法,把热释电材料的热弹性界面裂纹问题化为一向量形式的Hilbert问题,求出这一Hilbert问题的通解,进而求得了热释电材料热弹性界面裂纹的闭合解,得到了温度、热流、位移、电势、应力和电位移的全场解,得到了裂纹张开位移及电势差的精确表达式.在此基础上,还求得了均匀热释电体中单个热弹性裂纹裂尖场,单个界面裂纹裂尖场以及点热源与界面裂纹的作用.此外,该文还对界面裂纹顶点附近的端部场作了渐近分析.  相似文献   

7.
IntroductionDuetotheirintrinsicelectromechanicalcouplingproperties,piezoelectricceramicshavebeenextensivelyusedindesignofvariouselectronicandelectromechanicaldevicessuchassensorsandactuators.Inrecentyears,mechanicalanalysisofdislocations ,cracks,cavitie…  相似文献   

8.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

9.
A general solution for the stresses and displacements of a cracked sliding interface between anisotropic bimaterials subjected to uniform tensile stress at infinity is given by using the Stroh’s formulation. Horizontal and vertical opening displacements on the interface, stress intensity factors, and energy release rate are expressed in real form, which are valid for any kind of anisotropic materials including the degenerate materials such as isotropic materials. It is observed that stresses exhibit the traditional inverse square root singularities near the crack tips, and the vertical opening displacement and energy release rate are intimately related to a real parameter λ determined by the elastic constants of the anisotropic bimaterials.  相似文献   

10.
By using the extended version of Eshelby-Stroh's formulation and the method of analyt-ical continuation,the problems of interface cracks are reduced to a Hilbert problem of vector form.Ageneral explicit closed form solution for the piezothermoelastic interface crack problem is then ob-tained,the whole field solutions of temperature,heat flux,displacements,electric field,stress andelectric induction are given,the explicit expressions for the crack opening displacements and electricpotential are also provided.  相似文献   

11.
Summary A boundary value problem for two semi-infinite anisotropic spaces with mixed boundary conditions at the interface is considered. Assuming that the displacements are independent of the coordinate x 3, stresses and derivatives of displacement jumps are expressed via a sectionally holomorphic vector function. By means of these relations the problem for an interface crack with an artificial contact zone in an orthotropic bimaterial is reduced to a combined Dirichlet-Riemann problem which is solved analytically. As a particular case of this solution, the contact zone model (in Comninou's sense) is derived. A simple transcendental equation and an asymptotic formula for the determination of the real contact zone length are obtained. The classical interface crack model with oscillating singularities at the crack tips is derived from the obtained solution as well. Analytical relations between fracture mechanical parameters of different models are found, and recommendations concerning their implementation are given. The dependencies of the contact zone lengths on material properties and external load coefficients are illustrated in graphical form. The practical applicability of the obtained results is demonstrated by means of a FEM analysis of a finite-sized orthotropic bimaterial with an interface crack. Received 19 October 1998; accepted for publication 13 November 1998  相似文献   

12.
利用积分变换技术,结合Copson方法,研究了含直线型对称裂纹的一维六方压电准晶对SH波的散射问题。通过求解对偶积分方程,得到声子场、相位子场应力、位移及电场电位移分量的解析解。定义了裂纹尖端应力强度因子及电位移强度因子,给出了电非渗透性条件下应力强度因子及电位移强度因子的解析解。此研究结果对压电准晶材料的工程应用有一定的理论价值。  相似文献   

13.
This paper considers the magnetoelectroelastic problem of a crack in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects. Based on the extended Stroh formalism, the general two-dimensional solutions to the magnetoelectroelastic problem are obtained, involving five analytic functions of different variables. The magnetoelectroelastic field around the crack tip is given. It contains five modes of square root singularities. Expressions of the stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived and the field intensity factors are provided. The path-independent conservative integral is derived. The energy release rate is written in terms of those field intensity factors. The explicit algebraic results are given for a special case of an anti-plane crack in a magnetoelectroelastic medium.  相似文献   

14.
基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fred-holm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。  相似文献   

15.
In this paper, an analytical solution in series form for the problem of a circularly cylindrical layered piezoelectric composite consisting of N dissimilar layers is presented within the framework of linear piezoelectricity. Each layer of the composite is assumed to be transversely isotropic with respect to the longitudinal direction (x3 direction), and the composite is subject to arbitrary electromechanical singularities infinitely extended in a direction perpendicular to the x1x2 plane such that only in-plane electric fields and out-of-plane displacement are produced. The alternating technique in conjunction with the method of analytical continuation is applied to derive the general multilayered media solution in an explicit series form, whose convergence is guaranteed numerically. The distributions of the shear stress and electric field are found to be dependent on the material combinations and the magnitude and position of the electromechanical singularities. An exactly closed form solution is obtained and discussed graphically for a practical example.  相似文献   

16.
Plane problem for an infinite space composed of two different piezoelectric or piezoelectric/dielectric semi-infinite spaces with a periodic set of limited electrically permeable interface cracks is considered. Uniformly distributed electromechanical loading is applied at infinity. The frictionless contact zones at the crack tips are taken into account. The problem is reduced to the combined Dirichlet–Riemann boundary value problem by means of the electromechanical factors presentation via sectionally analytic functions, assuming that the electric flux is uniformly distributed inside the cracks. An exact solution of the problem is proposed. It permits to find in a closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux value. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region.Formulae for stresses, electric displacement vector, elastic displacements and electric potential jump at the interface as well as the intensity factors at the crack tips are given. Equation for the contact zone length determination is presented. Calculations for certain material combinations are carried out. The influence of electric permeability of cracks on electromechanical fields and the fracture mechanical parameters is analyzed.  相似文献   

17.
IntroductionCompositematerialconsistingofapiezoelectricphaseandapiezomagneticphasehasdrawnsignificantinterestinrecentyears,duetotherapiddevelopmentinadaptivematerialsystems .Itshowsaremarkablylargemagnetoelectriccoefficient,thecouplingcoefficientbetweenst…  相似文献   

18.
Summary An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x 2, the expression for the displacement jumps and stresses along the interface are found via a sectionally holomorphic vector function. For piezoceramics of the symmetry class 6 mm and for electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem which can be solved analytically. Further, analytical expressions for the stresses, electrical displacements, derivatives of elastic displacement jumps, stress and electrical intensity factors are found at the interface. Real contact zone lengths and the well-known oscillating solution are derived from the obtained solution as well. Analytical relationships between the fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of an interface crack in the discontinuity area of a piezoelectric bimaterial. Received 16 March 1999; accepted for publication 31 May 1999  相似文献   

19.
A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh’s formalism. Motivated by strong engineering demands to design new composite materials, the authors perform numerical analysis of interface crack tip singularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Polymer, Al2O3, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than commercial piezoelectric ceramics is treated as a special transversely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: and , which is quite different from that in the impermeable interface crack. It can be concluded that different far field loading cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the electric field induced crack growth is well explained, which provides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials. The project supported by the National Natural Science Foundation of China (10572110), Doctor Foundation of the Chinese Education Ministry and Doctorate Foundation of Xi’an Jiaotong University. The English text was polished by Yunming Chen.  相似文献   

20.
In this paper, the behavior of an interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness subjected to an uniform tension is resolved using a somewhat different approach, named the Schmidt method. The Fourier transform technique is applied and a mixed boundary value problem is reduced to two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surface. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the cracks. It can be obtained that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. Contrary to the previous solution of the interface crack, it is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号