首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses itself to the algorithm for minimizing the sum of a convex function and a product of two linear functions over a polytope. It is shown that this nonconvex minimization problem can be solved by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in higher dimension and apply a parametric programming (path following) approach. Also it is shown that the same idea can be applied to a generalized linear fractional programming problem whose objective function is the sum of a convex function and a linear fractional function.  相似文献   

2.
A semidefinite programming problem is a mathematical program in which the objective function is linear in the unknowns and the constraint set is defined by a linear matrix inequality. This problem is nonlinear, nondifferentiable, but convex. It covers several standard problems (such as linear and quadratic programming) and has many applications in engineering. Typically, the optimal eigenvalue multiplicity associated with a linear matrix inequality is larger than one. Algorithms based on prior knowledge of the optimal eigenvalue multiplicity for solving the underlying problem have been shown to be efficient. In this paper, we propose a scheme to estimate the optimal eigenvalue multiplicity from points close to the solution. With some mild assumptions, it is shown that there exists an open neighborhood around the minimizer so that our scheme applied to any point in the neighborhood will always give the correct optimal eigenvalue multiplicity. We then show how to incorporate this result into a generalization of an existing local method for solving the semidefinite programming problem. Finally, a numerical example is included to illustrate the results.  相似文献   

3.
In this paper, we treat linear programming problems with fuzzy objective function coefficients. To such a problem, the possibly optimal solution set is defined as a fuzzy set. It is shown that any possibly optimal solution can be represented by a convex combination of possibly optimal vertices. A method to enumerate all possibly optimal vertices with their membership degrees is developed. It is shown that, given a possibly optimal extreme point with a higher membership degree, the membership degree of an adjacent extreme point is calculated by solving a linear programming problem and that all possibly optimal vertices are enumerated sequentially by tracing adjacent possibly optimal extreme points from a possibly optimal extreme point with the highest membership degree.  相似文献   

4.
AGENERATORANDASIMPLEXSOLVERFORNETWORKPIECEWISELINEARPROGRAMSSUNJIE(孙捷)(InstituteofAppliedMathemematics,theChineseAcademyofSci...  相似文献   

5.
A problem of minimizing a sum of many convex piecewise-linear functions is considered. In view of applications to two-stage linear programming, where objectives are marginal values of lower level problems, it is assumed that domains of objectives may be proper polyhedral subsets of the space of decision variables and are defined by piecewise-linear induced feasibility constraints. We propose a new decomposition method that may start from an arbitrary point and simultaneously processes objective and feasibility cuts for each component. The master program is augmented with a quadratic regularizing term and comprises an a priori bounded number of cuts. The method goes through nonbasic points, in general, and is finitely convergent without any nondegeneracy assumptions. Next, we present a special technique for solving the regularized master problem that uses an active set strategy and QR factorization and exploits the structure of the master. Finally, some numerical evidence is given.On leave from Instytut Automatyki, Politechnika Warszawska, Poland.  相似文献   

6.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

7.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

8.
This article considers a curve-fitting problem involving the minimization of the distance from a functionf to a convex cone of functions. A weighted uniform norm is considered as a measure of the distance. The domain of the functions is a partially ordered set, and the convex cone is defined by the isotonicity and nonnegativity conditions on functions. The problem has a linear programming formulation; however, explicit expressions for the optimal solutions have been obtained directly, thereby eliminating the necessity of using linear programming techniques. The results are applied to approximation by starshaped functions.  相似文献   

9.
An algorithm for solving a linear multiplicative programming problem (referred to as LMP) is proposed. LMP minimizes the product of two linear functions subject to general linear constraints. The product of two linear functions is a typical non-convex function, so that it can have multiple local minima. It is shown, however, that LMP can be solved efficiently by the combination of the parametric simplex method and any standard convex minimization procedure. The computational results indicate that the amount of computation is not much different from that of solving linear programs of the same size. In addition, the method proposed for LMP can be extended to a convex multiplicative programming problem (CMP), which minimizes the product of two convex functions under convex constraints.  相似文献   

10.
The paper presents a logarithmic barrier cutting plane algorithm for convex (possibly non-smooth, semi-infinite) programming. Most cutting plane methods, like that of Kelley, and Cheney and Goldstein, solve a linear approximation (localization) of the problem and then generate an additional cut to remove the linear program's optimal point. Other methods, like the central cutting plane methods of Elzinga-Moore and Goffin-Vial, calculate a center of the linear approximation and then adjust the level of the objective, or separate the current center from the feasible set. In contrast to these existing techniques, we develop a method which does not solve the linear relaxations to optimality, but rather stays in the interior of the feasible set. The iterates follow the central path of a linear relaxation, until the current iterate either leaves the feasible set or is too close to the boundary. When this occurs, a new cut is generated and the algorithm iterates. We use the tools developed by den Hertog, Roos and Terlaky to analyze the effect of adding and deleting constraints in long-step logarithmic barrier methods for linear programming. Finally, implementation issues and computational results are presented. The test problems come from the class of numerically difficult convex geometric and semi-infinite programming problems.This work was completed under the support of a research grant of SHELL.On leave from the Eötvös University, Budapest, and partially supported by OTKA No. 2116.  相似文献   

11.
The method of centers is a well-known method for solving nonlinear programming problems having inequality constraints. Pironneau and Polak have recently presented a new version of this method. In the new method, the direction of search is obtained, at each iteration, by solving a convex quadratic programming problem. This direction finding subprocedure is essentially insensitive to the dimension of the space on which the problem is defined. Moreover, the method of Pironneau and Polak is known to converge linearly for finite-dimensional convex programs for which the objective function has a positive-definite Hessian near the solution (and for which the functions involved are twice continuously differentiable). In the present paper, the method and a completely implementable version of it are shown to converge linearly for a very general class of finite-dimensional problems; the class is determined by a second-order sufficiency condition and includes both convex and nonconvex problems. The arguments employed here are based on the indirect sufficiency method of Hestenes. Furthermore, the arguments can be modified to prove linear convergence for a certain class of infinite-dimensional convex problems, thus providing an answer to a conjecture made by Pironneau and Polak.  相似文献   

12.
Dinkelbach's algorithm was developed to solve convex fractinal programming. This method achieves the optimal solution of the optimisation problem by means of solving a sequence of non-linear convex programming subproblems defined by a parameter. In this paper it is shown that Dinkelbach's algorithm can be used to solve general fractional programming. The applicability of the algorithm will depend on the possibility of solving the subproblems. Dinkelbach's extended algorithm is a framework to describe several algorithms which have been proposed to solve linear fractional programming, integer linear fractional programming, convex fractional programming and to generate new algorithms. The applicability of new cases as nondifferentiable fractional programming and quadratic fractional programming has been studied. We have proposed two modifications to improve the speed-up of Dinkelbachs algorithm. One is to use interpolation formulae to update the parameter which defined the subproblem and another truncates the solution of the suproblem. We give sufficient conditions for the convergence of these modifications. Computational experiments in linear fractional programming, integer linear fractional programming and non-linear fractional programming to evaluate the efficiency of these methods have been carried out.  相似文献   

13.
Quadratic knapsack problem has a central role in integer and nonlinear optimization, which has been intensively studied due to its immediate applications in many fields and theoretical reasons. Although quadratic knapsack problem can be solved using traditional nonlinear optimization methods, specialized algorithms are much faster and more reliable than the nonlinear programming solvers. In this paper, we study a mixed linear and quadratic knapsack with a convex separable objective function subject to a single linear constraint and box constraints. We investigate the structural properties of the studied problem, and develop a simple method for solving the continuous version of the problem based on bi-section search, and then we present heuristics for solving the integer version of the problem. Numerical experiments are conducted to show the effectiveness of the proposed solution methods by comparing our methods with some state of the art linear and quadratic convex solvers.  相似文献   

14.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

15.
For the linear bilevel programming problem, we propose an assumption weaker than existing assumptions, while achieving similar results via a penalty function approach. The results include: equivalence between (i) existence of a solution to the problem, (ii) existence of an exact penalty function approach for solving the problem, and (iii) achievement of the optimal value of the equivalent form of the problem at some vertex of a certain polyhedral convex set. We prove that the assumption is both necessary and sufficient for the linear bilevel programming problem to admit an exact penalty function formulation, provided that the equivalent form of the problem has a feasible solution. A method is given for computing the minimal penalty function parameter value. This method can be executed by solving a set of linear programming problems. Lagrangian duality is also presented.  相似文献   

16.
We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of the relaxations increases as the number of conjuncts decreases, leading to a hierarchy of relaxations. We prove that the tightest of these relaxations, allows in theory the solution of the disjunctive convex program as a nonlinear programming problem. We present a methodology to guide the generation of strong relaxations without incurring an exponential increase of the size of the reformulated mixed-integer program. Finally, we apply the theory developed to improve the computational efficiency of solution methods for nonlinear convex generalized disjunctive programs (GDP). This methodology is validated through a set of numerical examples.  相似文献   

17.
The proximal point method for convex optimization has been extended recently through the use of generalized distances (e.g., Bregman distances) instead of the Euclidean one. One advantage of these extensions is the possibility of eliminating certain constraints (mainly positivity) from the subproblems, transforming an inequality constrained problem into a sequence of unconstrained or equality constrained problems. We consider here methods obtained using a certain class of Bregman functions applied to convex quadratic (including linear) programming, which are of the interior-point type. We prove that the limit of the sequence generated by the method lies in the relative interior of the solution set, and furthermore is the closest optimal solution to the initial point, in the sense of the Bregman distance. These results do not hold for the standard proximal point method, i.e., when the square of the Euclidean norm is used as the Bregman distance.The research leading to this paper was partially supported by CNPq Grant 301280/86.We thank two anonymous referees whose comments and suggestions allowed us to improve our results in a significant way.  相似文献   

18.
Many global optimization approaches for solving signomial geometric programming problems are based on transformation techniques and piecewise linear approximations of the inverse transformations. Since using numerous break points in the linearization process leads to a significant increase in the computational burden for solving the reformulated problem, this study integrates the range reduction techniques in a global optimization algorithm for signomial geometric programming to improve computational efficiency. In the proposed algorithm, the non-convex geometric programming problem is first converted into a convex mixed-integer nonlinear programming problem by convexification and piecewise linearization techniques. Then, an optimization-based approach is used to reduce the range of each variable. Tightening variable bounds iteratively allows the proposed method to reach an approximate solution within an acceptable error by using fewer break points in the linearization process, therefore decreasing the required CPU time. Several numerical experiments are presented to demonstrate the advantages of the proposed method in terms of both computational efficiency and solution quality.  相似文献   

19.
We present in this paper a numerical method for solving non-strictly-convex quadratic semi-infinite programming including linear semi-infinite programming. The proposed method transforms the problem into a series of strictly convex quadratic semi-infinite programming problems. Several convergence results and a numerical experiment are given.  相似文献   

20.
参数凸二次规划的线性稳定性   总被引:2,自引:0,他引:2  
本文研究参数凸二次规划的最优解集的稳定性。首先给出参数数学规划的方向线性稳定的定义,然后利用集值映射的微分理论证明线性约束参数凸二次规划是线性稳定的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号