首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract With aging, human lens proteins accumulate fluorophores having blue and green emissions. Model studies were undertaken to determine the role of 3-hydroxykynurenine (3-HK) and its glucoside (3-HKG) in the photochemical production of those fluorophores. Experiments were carried out using 10−3 M 3-HK solutions in the presence or absence of glycine (1 M ), which was used to mimic the environment of the lens. The solutions were photolyzed (transmission above 295 nm) for various periods of time while the loss of starting material and the formation of fluorescent photoproducts (blue emission at 470 nm, and green emission at 520 nm) were monitored using fluorescence and UV-visible spectroscopy and thin-layer and high-pressure liquid chromatography analysis. Several parameters were varied such as oxygen tension and the addition of the free radical scavenger, penicillamine. The photolytic loss of 3-HK in the absence of glycine occurred approximately 5-10 times faster than in its presence. Conversely, blue and green fluorophores formed in irradiated solutions containing glycine but not with the photolysis of 3-HK alone. The blue fluorophore was formed first and appeared then to be photochemically converted to the green one, with the rate of formation of the latter increasing with an increase in UV dosage or oxidizing conditions. The addition of penicillamine drastically reduced the photochemical formation of both fluorophores.
Both the blue and green fluorophores appear to result from the photochemically induced covalent attachment of 3-HK to glycine. In the human lens, these reactions can explain the age-related loss of 3-HKG with the concomitant formation of fluorophores covalently attached to lens proteins, probably via the amino group of lysine.  相似文献   

2.
The young human lens contains species (3-hydroxy kynurenine; 3-HK and its glucoside; 3-HKG) which absorb most light between 300 and 400 nm. Photochemical studies have indicated that these compounds are relatively inefficient sensitizers of lens proteins. An investigation of the fluorescent properties of 3-HKG indicate that it contains a fast deactivation pathway (ps) which would be expected to have minimal photochemical effect on the integrity of the lens. Further phot physical studies on 3-HK indicates that it has an even faster fluorescent lifetime (less than 10 ps) with a much lower quantum yield of fluorescence (0.001 vs 0.03 for 3-HKG). With aging, the human lens proteins undergo numerous changes including a generalized yellowing. These chromophores exhibit a higher quantum yield of fluorescence, an increase in the fluorescent lifetime by 2 orders of magnitude and the formation of two long lived transient species (microsecond). These species might be expected to drastically increase the susceptibility of the human lens to ambient radiation. Based upon quantitative experimental comparisons with 3-HK this does not seem to be the case. Further time resolved studies on old lens proteins indicate that the two transient species are interconnected in that the first transient species is the precursor to the second. The implications of this mechanism on the integrity of the lens and origin of those chromophores is discussed.  相似文献   

3.
The tryptophan metabolite, xanthurenic acid (Xan), is produced through a transamination reaction in high concentrations in human lenses with age and has been isolated from aged human cataractous lenses. It has appreciable absorption between 300 and 400 nm (lambda max = 334 nm), the range absorbed by the human lens. Our recent studies have shown that unlike most tryptophan metabolites in the eye, Xan is photochemically active, producing both superoxide and singlet oxygen. To determine if Xan could act as a photosensitizer and photooxidize cytosolic lens proteins, alpha-, beta- and gamma-crystallins were irradiated (lambda > 300 nm, 12 mW/cm2) in the presence and absence of Xan. Upon irradiation and in the presence of Xan, lens proteins polymerized in the order alpha > beta > gamma as assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Further analysis of the photolyzed alpha-crystallin by mass spectrometry indicated that histidine, tryptophan and methionine residues were oxidized at specific positions in a dose-dependent (irradiation time) manner. In alpha A-crystallin two forms of oxidized histidine 154 were observed, 2-imidazolone and 2-oxohistidine. Our results suggest that naturally occurring Xan is a chromophore capable of photosensitization and photooxidation of lens proteins. Furthermore, this compound could play a role in age-related cataractogenesis.  相似文献   

4.
Abstract. In this work, the non-tryptophan fluorescence (360 nm excited; 440 nm emitted) of human lens proteins was found to be intensified by exposing whole lens homogenates to near-UV light in the presence of tryptophan photoproducts. The induced fluorescence accumulates mainly in the soluble phase proteins, whereas in aging and brown cataractous lenses, the major fluorescence is found in the insoluble proteins. Using SDS-polyacrylamide gel electrophoresis with densitometric and fluorescence scanning techniques, the polypeptide chains of the three major protein fractions were analyzed for their specific non-tryptophan fluorescences. The same chains were found in all fractions. Two chains (11,000 and 45,000 daltons) were found to accumulate most of the induced fluorescence. These also contained the greatest intrinsic fluorescence initially. The data indicates that specific polypeptide chains in the lens proteins are most sensitive to modifications due to their exposure to near-UV light in the presence of tryptophan photoproducts.  相似文献   

5.
The purpose of this study was to quantitatively study the changes that occur upon irradiation of 3-hydroxykynurenine (3-HK) in the presence of alpha-crystallin under conditions similar to those in the lens. The samples were prepared in 10 mM phosphate buffer at pH 7.4, bubbled with O2 or Ar and irradiated with 300-400 nm light. The amount of light absorbed by the samples (Iabs) was measured using azobenzene as an actinometer. Modifications to alpha-crystallin were monitored by ultraviolet-visible and fluorescence spectroscopy. Aerobic samples had increased absorption around 320 nm and above 400 nm while the 3-HK maximum at 368 nm decreased. The isolated modified protein showed that there was increased absorption throughout the spectrum. Changes in the anaerobic samples were similar to those of the aerobic but occurred more slowly. As irradiation time increased fluorescence emission of the isolated protein red shifted and quantum yields of fluorescence (phi f) were calculated at different irradiation time intervals by comparison to 3-HK. By comparing OD320/OD365 for the model system to values from primate lenses, Iabs can be correlated with age and transmission of the sample in the blue region of the spectrum and thus allows lenticular aging to be quantitated.  相似文献   

6.
alpha-Crystallin, a major protein of the mammalian lens, plays a vital role in maintaining the structural stability and transparency of the lens. It performs this function through chaperone-like activity; it has recently been reported that heating alpha-crystallin enhances this ability. The present studies, using both time-resolved and steady-state fluorescence methods, were carried out to compare the conformational changes that result from heating with those that result from increasing protein concentration (up to 70 mg/mL). The relative fluorescence quantum yield from tryptophan (Trp) present in alpha-crystallin increases and then decreases with a concomitant shift of the emission maximum to longer wavelengths when either heating times or protein concentrations are increased. The time profile of fluorescence decay was resolved into three components with lifetimes of ca 0.5, 3 and 7 ns and emission maxima of ca 340, 342 and 350 nm, respectively. With longer heating time or increasing concentrations the contribution from the longer-lived component increases at the expense of the shorter-lived species. These data indicate that with heating or at higher concentrations the internal Trp residues move to the surface of the protein giving a more hydrophobic exterior and possibly explain the reported increased chaperone activity upon heating. As a result of the concentration studies, alpha-crystallin may be more efficient in its chaperone activity in vivo than has been determined by in vitro experiments.  相似文献   

7.
Molecular interactions between hypericin and alpha-, beta- and gamma-crystallin proteins have been studied by means of absorption and steady-state fluorescence spectroscopy, aiming to clarify if and how the pigment binds to the proteins and to investigate the effects of visible-light irradiation on these molecular systems. Such a study is a prerequisite for assessing the possibility of using hypericin as a mild antidepressant and/or as a photodynamic agent for the treatment of eye tumors and eye viral and bacterial diseases without side injuries to the lens. We have shown that in dark-kept samples, with increasing alpha-crystallin concentration, both the fluorescence emission intensity and the ratio of the absorption maxima around 590 and 550 nm of hypericin increase. These effects have been attributed to the monomerization of nonfluorescent hypericin aggregates caused by the binding of the pigment to alpha-crystallin. The binding constant of hypericin has been evaluated to be of the order of 3.0 (mg/mL)-1, corresponding to a dissociation constant of the order of 0.3 mg/mL. Following irradiation with light of wavelengths over 400 nm, at an irradiance of 20 mW/cm2, both tryptophan and hypericin fluorescence emission intensities decrease. These effects are suggested to be the consequence of a spatial rearrangement of the protein framework which takes place following the alpha-crystallin photopolymerization sensitized by hypericin itself described in the literature. For the sake of comparison hypericin has been studied also in the presence of beta H-, beta L- and gamma-crystallins at the same concentration.  相似文献   

8.
Anaerobic solutions of lens alpha-crystallin were subjected to near-UV (greater than 295 nm) irradiation, and the photoproducts were analyzed by fluorescence and room-temperature phosphorescence spectroscopy. The principal photoproduct was excited maximally at 340 nm, fluoresced maximally at 430 nm, and phosphoresced with an emission maximum at 510 nm. The phosphorescence intensity decay of this species was well fit by a sum of two exponentials with lifetimes of 9.2 ms (78%) and 61 ms (22%); this report is the first demonstration of a long-lived triplet state associated with a protein photolysis product. As reported previously, 3trp* is also long-lived in deoxygenated alpha-crystallin solution at room-temperature (Berger and Vanderkooi, 1989, Biochemistry 28, 5501-5508), hence both tryptophan and photoproduct triplet states are good candidates to mediate photodamage. Photolysis experiments in the presence of agents known to alter the tryptophan triplet yield provide evidence for the importance of triplet-state-mediated photodamage of lens crystallins in anaerobic solution. In 30 mM acrylamide where 3trp*, but not 1trp*, is efficiently quenched, anaerobic solutions exhibited marked resistance to protein photodamage, whereas the photoprotection in aerobic solution was minimal. In D2O, where photoionization is suppressed but triplet states are longer-lived, photodamage was accelerated in anaerobic solution but reduced in aerobic solutions. Finally, the anaerobic photodestruction rate was increased in 500 mM Cs+ solution where the triplet yield is increased by a heavy atom effect.  相似文献   

9.
Among chaperone-like functioning proteins, the lens alpha-crystallins are of particular interest because they are not renewed, and even minor alterations can hurt their function of maintaining the proper refractive index and avoiding cataract formation in the lens. Several reports have suggested the occurrence of remarkable structural modifications in lens proteins in the presence of endogenous and exogenous sensitizers upon exposure to light. In particular, it has been shown in vitro that hypericin, the active ingredient of Hypericum, can bind to and, in the presence of light, cause the photopolymerization of alpha-crystallin. On the basis of these results it has also been suggested that a subsequent significant impairment of the protein function can occur. Using absorption and emission spectroscopic techniques, as well as circular dichroism, we have studied the structural modifications of alpha-crystallin resulting from its interaction with hypericin after irradiation with visible light. To investigate the chaperone-like function of alpha-crystallin, the heat-induced aggregation kinetics of another lens protein, betaLow-crystallin, was monitored by measuring the apparent absorption due to scattering at 360 nm as a function of time, and no apparent damage to its functional role was observed. Spectroscopic results, on the contrary, show a prominent reduction in both tryptophan and hypericin fluorescence emission intensity after light irradiation, suggesting an alteration in the tryptophan microenvironment and a high degree of packing of the chromophore due to photoinduced modification of the molecular framework. Control experiments on alpha-crystallin structurally modified by light in the presence of hypericin indicated that the protein still retains its ability to chaperone both lens crystallins and insulin.  相似文献   

10.
TIME RESOLVED SPECTROSCOPIC STUDIES ON THE INTACT HUMAN LENS   总被引:1,自引:0,他引:1  
Abstract— The human lens is continually under photooxidative stress from ambient radiation. In the young lens the major absorbing (between300–400 nm) species is the glucoside of 3-hydroxy kynurenine. Using time resolved fluorescence spectroscopy on both the isolated compound and the intact human lens, the first excited singlet state of this compound is shown to have fast (ps) decay processes. This would tend to minimize damage to lens constituents because there would be little time for energy transfer into more harmful channels. Thus, this compound appears to act as a protection for the retina. With aging, human lens proteins become yellow with absorptions out to 450 nm. Time resolved diffuse reflectance spectroscopic studies on intact older human lenses showed that excitation (355 nm) resulted in the formation of long lived (microseconds) transient species with an absorption maximum at ca 490 nm. Similar spectra were obtained from two model systems used to explain age related changes in human lens proteins.  相似文献   

11.
Abstract— Fluorescence lifetimes are reported for intact human lenses in vitro. Two spectral regions were investigated: The first was excited at 296nm and detected at 332 or 370nm and corresponds to emission from tryptophan residues in the lens proteins. The second spectral region was excited at 359 nm and detected at 435 nm and corresponds to non-tryptophan 'fluorogen' fluorescence. The latter displayed a constant lifetime, 3.8 ns, independent of the anatomical part of the lens excited. This value was compared with measured lifetimes for some model fluorogens. The tryptophan fluorescence lifetime (332 nm detection) was found to vary from 1.8 to 2.8 ns depending on the anatomical part of the lens excited.  相似文献   

12.
We have been able to identify a blue fluorophore from the low-molecular weight soluble fraction of human adult nondiabetic brunescent cataract lenses as xanthurenic acid 8-O-beta-D-glucoside (XA8OG) (excitation = 338 nm and emission = 440 nm). To determine the role of this fluorophore in the lens, we have examined its photophysical and photodynamic properties. We found XA8OG to have a fluorescence quantum yield (phi) of 0.22 and a major emission lifetime of 12 ns. We found it to be a UVA-region sensitizer, capable of efficiently generating singlet oxygen species but little of superoxide. We also demonstrated that XA8OG oxidizes proteins when irradiated with UVA light, causing photodynamic covalent chemical damage to proteins. Its accumulation in the aging human lens (and the attendant decrease of its precursor O-beta-D-glucoside of 3-hydroxykynurenine) can, thus, add to the oxidative burden on the system. XA8OG, thus, appears to be an endogenous chromophore in the lens, which can act as a cataractogenic agent.  相似文献   

13.
Coleman A  Pryce MT 《Inorganic chemistry》2008,47(23):10980-10990
A series of pyrene based dyad systems together with their dicobalt hexacarbonyl complexes (1b-6b) were synthesized. The pyrene-thiophene dyads are luminescent in room temperature solution with luminescence lifetimes on the nanosecond time scale. At room temperature the dyad emission is quenched by coordination to a Co(2)(CO)(6) moiety via an acetylene bridge. However, at 77 K this emission is not fully quenched following complexation. Electrochemical studies suggest that an intraligand state is responsible for the emission. Photochemical studies in the presence of PPh(3) indicate that CO loss occurs following broadband irradiation with lambda(exc) > 400 nm, resulting in the formation of both -pentacarbonyl and -tetracarbonyl photoproducts.  相似文献   

14.
An investigation into the influence of UV irradiation on elastin hydrolysates dissolved in water was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorption of elastin hydrolysates in solution increased during irradiation of the sample. For fluorescence of elastin hydrolysates we observed both, a decrease and increase of this value during irradiation of the sample. After UV irradiation of the elastin solution we observed a minor increase of overall absorption, most notably between 250 nm and 280 nm. Moreover, after UV irradiation a wide peak emerged between 290 nm and 310 nm with maximum at about 305 nm. The new peak suggests that new photoproducts are formed during UV irradiation of elastin hydrolysates. The fluorescence of elastin hydrolysates was observed at 305 nm and at 380 nm after excitation at 270 nm. UV irradiation caused fluorescence fading at 305 nm and 380 nm. After 30 min of irradiation a new broad weak band of fluorescence, attributable to new photoproducts, emerged in the UV wavelength region with emission maximum between 400 nm and 500 nm.  相似文献   

15.
Fluorometric studies of cataractous and non-cataractous human lenses were carried out to study the emission characteristics and the distribution and solubility of lenticular pigments. Most of the detected fluorophores were well distributed over the cortical and nuclear portion of the lens. The decrease in solubility of proteins with aging and cataract formation is concomitant with increasing photolysis of tryptophan. However, this is likely a phenomenon independent of the photochemical transformations of the lens proteins. The number of emitting species in the diseased lenses are higher than in the normal mature lenses. A species emitting around 375 or 388 nm is of particular interest (lambda cx 330 nm) in that the emission characteristics of this fluorophore resemble kynurenic acid which has a high photosensitizing efficiency. The concentration of fluorescent pigments in the lenses of Indian origin is significantly high. The intense pigmentation could be attributed largely to the formation of photoproducts in the absence of normal endogenous antioxidant accumulation that is dependent on nutrition standard. If, indeed, any of these fluorescent pigments, because of their photosensitizing ability, are responsible for lenticular opacity, it is not the abundance of sunlight alone but also malnutrition that could account for the high incidence of cataract in India.  相似文献   

16.
Abstract— Fluorometric studies of cataractous and non-cataractous human lenses were carried out to study the emission characteristics and the distribution and solubility of lenticular pigments. Most of the detected fluorophores were well distributed over the cortical and nuclear portion of the lens. The decrease in solubility of proteins with aging and cataract formation is concomitant with increasing photolysis of tryptophan. However, this is likely a phenomenon independent of the photochemical transformations of the lens proteins. The number of emitting species in the diseased lenses are higher than in the normal mature lenses. A species emitting around 375 or 388 nm is of particular interest (λcx, 330 nm) in that the emission characteristics of this fluorophore resemble kynurenic acid which has a high photosensitizing efficiency. The concentration of fluorescent pigments in the lenses of Indian origin is significantly high. The intense pigmentation could be attributed largely to the formation of photoproducts in the absence of normal endogenous antioxidant accumulation that is dependent on nutrition standard. If, indeed, any of these fluorescent pigments, because of their photosensitizing ability, are responsible for lenticular opacity, it is not the abundance of sunlight alone but also malnutrition that could account for the high incidence of cataract in India.  相似文献   

17.
Abstract— We have examined the fluorescence properties of excised intact normal human corneas from over a hundred donors, using synchronous excitation fluorescence spectroscopy. In some of the corneas from the donors, a fluoro-phore with an excitation band centered at 330 nm was observed. This fluorophore does not seem to correspond to the dityrosine moiety or to any photoproducts of tryptophan. Isolated corneas irradiated with light of 295 nm wavelength do not produce any fluorescent photoproducts, suggesting that the intact tissue has endogenous quenchers, radical scavengers and antioxidants that inhibit its photodamage. The non-tryptophan fluorophores that accumulate in some corneas thus appear to arise largely from the nonenzymatic glycosylation (glycation) of the constituent proteins as similar fluorophores are detected in the corneas of rats in which diabetes is induced.  相似文献   

18.
Acetylcholine receptor (AcChR) enriched membrane fragments from Torpedo californica electroplax were labeled by in situ photogenerated nitrenes from a hydrophobic fluorescent probe, pyrene-1-sulfonyl azide. Preferential photolabeling of membrane proteins, mainly AcChR, has been achieved and there is a pronounced exposure of the 48,000 and 55,000 molecular weight subunits of AcChR to the lipid environment of the membrane core. Covalent attachment of the photogenerated fluorescence probe does not perturb the alpha-neurotoxins' binding properties of membrane-bound AcChR or the desensitization kinetics induced by prolonged exposures to cholinergic agonists. Non-covalent photoproducts can be conveniently removed from labeled membrane preparations by exchange into lipid vesicles prepared from electroplax membrane lipids. Fluorescence features of model pyrene sulfonyl amide derivatives, such as fine vibrational structure of emission spectra of fluorescence lifetimes, are highly sensitive to the solvent milieu. The covalently bound probe shows similar fluorescence properties in situ. PySA photoproducts have great potential to spectroscopically monitor neurotransmitter induced events on selected AcChR subunits exposed to the hydrophobic environment of membranes.  相似文献   

19.
Human lenses contain many photosensitizers that absorb light at wavelengths above 300 nm, most notably UVA light (320-400 nm). Kynurenine (Kyn) and 3-hydroxykynurenine (HK), two of the best-known photosensitizers in the human lens, may play a significant role in photooxidation-related changes in lens proteins, such as conformational change and aggregation. In vitro irradiation experiments with proteins indicate that the Trp residue (with maximal absorption at 295 nm) is more susceptible to photooxidation by UVB light (280-320 nm) than by UVA light, but most UVB light below 300 nm is screened by the cornea and little reaches the lens, especially the nuclear region where nuclear color develops. Therefore, if photooxidation is an important contributor to nuclear color or nuclear cataract, it must arise from a photosensitized reaction. In the present study, we use recombinant alpha A- and its Trp-deficient mutant W9F as models to study the effects of UVA irradiation in the presence of HK or Kyn and of UVB (300 nm) irradiation on alpha-crystallins. alpha A-crystallin showed a large decrease in Trp fluorescence and a large increase in non-Trp (blue) fluorescence after the HK-sensitized or 300 nm photooxidation. For the W9F mutant, a smaller decrease in protein fluorescence (lambda ex at 280 nm) and a smaller increase in blue fluorescence than for the wild-type alpha A-crystallin were observed. A decrease in the near-UV CD was also observed for both photooxidized alpha A and the W9F mutant. The effect of Kyn sensitization is smaller than that of HK sensitization. A study of chaperone-like activity indicated that only 300 nm photooxidized alpha A and the W9F mutant increased the ability to protect insulin from dithiothreitol-induced aggregation. Thus, sensitized photooxidation can occur in amino acids other than Trp by UVA in the presence of HK or Kyn with effects similar to, albeit smaller than, those of direct UVB (300 nm) photooxidation.  相似文献   

20.
Solid‐phase extraction was applied for the separation of protein digests obtained from aged human lenses, cataractous human lenses, calf lens proteins in vitro glycated with dehydroascorbic acid and native calf lens proteins. Four fractions were collected after stepwise elution with different solvents. The first fraction contained about 80% of the digested material possessing free amino groups. At the same time, the third and the fourth fractions were enriched in chromophores, fluorophores, and photosensitizing structures that originate mainly from advanced protein glycation. The comparison between the total digest and the fourth fraction based on their UV absorption at 330 nm, intensity of fluorescence (excitation/emission 350/450 nm), and production of singlet oxygen upon UVA irradiation argues that the solid‐phase extraction was capable of concentrating the advanced glycation end‐products about a hundredfold. Thus, this technique is a useful step for separation and concentration of fluorophores, chromophores, and photosensitizers from aged and glycated lens protein digests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号