首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) ?. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) ?. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) ?. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).  相似文献   

2.
A thin-layer synthesis technique was used to synthesize bulk amounts of the metastable phase, RuSb(3), a novel compound with the skutterudite structure. The compound crystallized at 350 degrees C and was stable to 525 degrees C. When annealed above 550 degrees C, it decomposed into RuSb(2) and Sb. Rietveld refinement of X-ray diffraction data showed the presence of excess Sb residing in the interstitial site in the skutterudite structure. X-ray diffraction and thermal analysis experiments allowed us to examine the evolution of the sample as a function of annealing and determine the reaction pathway. The activation energy for the crystallization of the compound was determined to be 3 eV/nucleation event, while the activation energy for decomposition was approximately 8 eV.  相似文献   

3.
The crystal structure of the small pore scandium terephthalate Sc(2)(O(2)CC(6)H(4)CO(2))(3) (hereafter Sc(2)BDC(3), BDC = 1,4-benzenedicarboxylate) has been investigated as a function of temperature and of functionalization, and its performance as an adsorbent for CO(2) has been examined. The structure of Sc(2)BDC(3) has been followed in vacuo over the temperature range 140 to 523 K by high resolution synchrotron X-ray powder diffraction, revealing a phase change at 225 K from monoclinic C2/c (low temperature) to Fddd (high temperature). The orthorhombic form shows negative thermal expansivity of 2.4 × 10(-5) K(-1): Rietveld analysis shows that this results largely from a decrease in the c axis, which is caused by carboxylate group rotation. (2)H wide-line and MAS NMR of deuterated Sc(2)BDC(3) indicates reorientation of phenyl groups via π flips at temperatures above 298 K. The same framework solid has also been prepared using monofunctionalized terephthalate linkers containing -NH(2) and -NO(2) groups. The structure of Sc(2)(NH(2)-BDC)(3) has been determined by Rietveld analysis of synchrotron powder diffraction at 100 and 298 K and found to be orthorhombic at both temperatures, whereas the structure of Sc(2)(NO(2)-BDC)(3) has been determined by single crystal diffraction at 298 K and Rietveld analysis of synchrotron powder diffraction at 100, 298, 373, and 473 K and is found to be monoclinic at all temperatures. Partial ordering of functional groups is observed in each structure. CO(2) adsorption at 196 and 273 K indicates that whereas Sc(2)BDC(3) has the largest capacity, Sc(2)(NH(2)-BDC)(3) shows the highest uptake at low partial pressure because of strong -NH(2)···CO(2) interactions. Remarkably, Sc(2)(NO(2)-BDC)(3) adsorbs 2.6 mmol CO(2) g(-1) at 196 K (P/P(0) = 0.5), suggesting that the -NO(2) groups are able to rotate to allow CO(2) molecules to diffuse along the narrow channels.  相似文献   

4.
Cu4(OH)6SO4 (1) and Cu4(OD)6SO4 (2) were obtained by hydrothermal syntheses from copper sulfate and sodium hydroxide in H2O and D2O, respectively. They crystallize in the monoclinic system, space group P2(1)/a (14), a = 13.1206(5), b = 9.8551(3), c = 6.0295(2) Angstroms, beta = 103.432(3) degrees, V = 758.3(1) Angstroms(3), Z = 4 and a = 13.1187(5), b = 9.8552(3), c = 6.0293(2) Angstroms, beta = 103.410(3) degrees, V = 758.3(1) Angstroms(3), Z = 4, respectively. They are iso-structural to the mineral brochantite and consist of double chains of edge-sharing copper octahedra that are connected to one another by corners to form corrugated planes along bc; these planes are in-turn bridged by the unprecedented mu7-sulfate tetrahedra to give a 3D-structure. All the hydrogen atoms were precisely located from refinement of the neutron powder diffraction data of the deuterated sample. Magnetic susceptibility data reveal a low-dimensional behavior at high temperature and the presence of both ferromagnetic and antiferromagnetic super-exchanges resulting in a 3D long-range antiferromagnetic ordering at 7.5 K accompanied by a small canting of the moments. The transition is confirmed by a lambda-peak in the specific heat. The magnetic structure at 1.4 K shows the moments are oriented perpendicular to the corrugated planes with alternation along +/-a for neighboring chains within the double chains. The enhanced incoherent scattering at low-angle suggests the existence of short-range ferromagnetic clusters.  相似文献   

5.
We describe the synthesis of two new quadruple perovskites, Sr(2)La(2)CuTi(3)O(12) (I) and Ca(2)La(2)CuTi(3)O(12) (II), by solid-state metathesis reaction between K(2)La(2)Ti(3)O(10) and A(2)CuO(2)Cl(2) (A = Sr, Ca). I is formed at 920 degrees C/12 h, and II, at 750 degrees C/24 h. Both the oxides crystallize in a tetragonal (P4/mmm) quadruple perovskite structure (a = 3.9098(2) and c = 15.794(1) A for I; a = 3.8729(5) and c = 15.689(2) A for II). We have determined the structures of I and II by Rietveld refinement of powder XRD data. The structure consists of perovskite-like octahedral CuO(4/2)O(2/2) sheets alternating with triple octahedral Ti(3)O(18/2) sheets along the c-direction. The refinement shows La/A disorder but no Cu/Ti disorder in the structure. The new cuprates show low magnetization (0.0065 micro(B) for I and 0.0033 micro(B) for II) suggesting that the Cu(II) spins are in an antiferromagnetically ordered state. Both I and II transform at high temperatures to 3D perovskites where La/Sr and Cu/Ti are disordered, suggesting that I and II are metastable phases having been formed in the low-temperature metathesis reaction. Interestingly, the reaction between K(2)La(2)Ti(3)O(10) and Ca(2)CuO(2)Cl(2) follows a different route at 650 degrees C, K(2)La(2)Ti(3)O(10) + Ca(2)CuO(2)Cl(2) --> CaLa(2)Ti(3)O(10) + CaCuO(2) + 2KCl, revealing multiple reaction pathways for metathesis reactions.  相似文献   

6.
Pyridine-2,6-dicarboxylic acid and 1,2-di-4-pyridylethylene react hydrothermally with nickel(II) nitrate, forming a metal-organic framework that forms a polycatenane-like structure through H-bonding interactions between water molecules and carboxylate O atoms with void spaces. Discrete acyclic trimeric and nonameric water clusters occupy the voids in the structures. X-ray powder diffraction and X-ray structure analysis have been used to characterize this compound. Crystal data for 1 {(3dpeH(2))[Ni(pdc)(2)](3).15H(2)O}: monoclinic space group P2(1)/c, a = 24.730(5) Angstroms, b = 19.895(2) Angstroms, c = 17.257(4) Angstroms, beta = 104.832(5) degrees, V = 8208(4) Angstroms(3), Z = 4, R1 = 0.0429, wR2 = 0.1072, and S = 1.051.  相似文献   

7.
A novel ScVO(3) perovskite phase has been synthesized at 8 GPa and 1073 K from the cation-disordered bixbyite-type ScVO(3). The new perovskite has orthorhombic symmetry at room temperature, space group Pnma, and lattice parameters a = 5.4006(2) ?, b = 7.5011(2) ?, and c = 5.0706(1) ? with Sc(3+) and V(3+) ions fully ordered on the A and B sites of the perovskite cell. The vanadium oxygen octahedra [V-O(6)] display cooperative Jahn-Teller (JT) type distortions, with predominance of the tetragonal Q(3) over the orthorhombic Q(2) JT modes. The orthorhombic perovskite shows Arrhenius-type electrical conductivity and undergoes a transition to triclinic symmetry space group P-1 close to 90 K. Below 60 K, the magnetic moments of the 4 nonequivalent vanadium ions undergo magnetic long-range ordering, resulting in a magnetic superstructure of the perovskite cell with propagation vector (0.5, 0, 0.5). The magnetic moments are confined to the xz plane and establish a close to zigzag antiferromagnetic mode.  相似文献   

8.
The crystal structure of the aluminosilicate MCM-68 was solved from synchrotron powder diffraction data by the program FOCUS. The unit cell framework contains Si100.6Al11.4O224. This material crystallizes in space group P42/mnm, where, after Rietveld refinement, a=18.286(1) A and c=20.208(2) A. A three-dimensional framework is found that contains continuous 12-ring channels and two orthogonal, intersecting, undulating 10-ring channels. Rietveld refinement of the model coordinates optimizes the framework geometry, to match the observed intensity profile by Rwp=0.1371, R(F2)=0.1411. It is not possible to determine the location of approximately 0.84 K+ cations remaining in the unit cell after the material is steamed and then dehydrated. The framework model also successfully predicts observed electron diffraction data in two projections, and the tetragonal projection can be determined independently from these data by direct methods. The calculated density of the framework structure is 1.66 g/cm3, and the T-site framework density is 16.6 T/1000 A3.  相似文献   

9.
Crystals of NaZn(H2O)2[BP2O8].H2O were grown under mild hydrothermal conditions at 170 degrees C. The crystal structure (solved by X-ray single-crystal methods: hexagonal, P6(1)22 (no. 178), a = 946.2(2), c= 1583.5(1) pm, V= 1227.8(4).10(6) pm3, Z = 6) exhibits a chiral octahedral-tetrahedral framework related to the CZP topology and contains helical ribbons of corner-linked borate and phosphate tetrahedra. Investigation of the thermal behavior up to 180 degrees C shows a (reversible) dehydration process; this leads to the microporous compound Na[ZnBP2O8].H2O, which has the CZP topology. The crystal structure of Na[ZnBP2O8].H2O was determined by X-ray powder diffraction by using a combination of simulated annealing, lattice-energy minimization, and Rietveld refinement procedures (hexagonal, P6(1)22 (no. 178), a = 954.04(2), c = 1477.80(3) pm, V= 164.88(5).10(6) pm3, Z = 6). The essential structural difference caused by the dehydration concerns the coordination of Zn2- changing from octahedral to tetrahedral arrangement.  相似文献   

10.
CuHY分子筛中铜离子的分布与吸附脱硫性能   总被引:2,自引:0,他引:2  
采用等体积浸渍法制备具有不同Cu担载量的CuHY 分子筛吸附剂. 用X射线衍射(XRD)、比表面积(BET)和氨程序升温脱附(NH3-TPD)技术对分子筛吸附剂进行了表征, 并测定了CuHY 分子筛吸附剂在含二苯并噻吩(DBT)模拟柴油中的吸附脱硫性能; 通过多晶XRD确定了Cu2+在Cu8HY 分子筛笼内的结构与分布. 实验结果表明, 分子筛的骨架结构没有发生改变, 部分Cu2+进入Y型分子筛笼内, 分子筛样品强酸中心有所减少, 中强酸中心有所增加; 进入Y型分子筛笼内的Cu2+, 一部分处于β 笼的SI' 位, 另一部分位于分子筛超笼中的SIII位上, 并与笼内的水分子配位. 处于超笼中的SⅢ位Cu2+对模拟柴油中的DBT分子具有吸附作用, 是吸附脱硫的中心. 而当模拟柴油中存在萘时, 与DBT分子会产生竞争吸附.  相似文献   

11.
We have prepared Am(IO(3))(3) as a part of our continuing investigations into the chemistry of the 4f- and 5f-elements' iodates. Single crystals were obtained from the reaction of Am(3+) and H(5)IO(6) under mild hydrothermal conditions. Crystallographic data on an eight-day-old crystal are (21 degrees C, Mo Kalpha, lambda = 0.71073 Angstroms): monoclinic, space group P2(1)/c, a = 7.2300(5) Angstroms, b = 8.5511(6) Angstroms, c = 13.5361(10) Angstroms, beta = 100.035(1) degrees, V = 824.06(18), Z = 4. The structure consists of Am(3+) cations bound by iodate anions to form [Am(IO(3))(8)] units, where the local coordination environment around the americium centers is a distorted dodecahedron. There are three crystallographically unique iodate anions within the structure that bridge in both bidentate and tridentate fashions to form the overall three-dimensional structure. Repeated collection of X-ray diffraction data with time for a crystal of (243)Am(IO(3))(3) revealed an anisotropic expansion of the unit cell, presumably from self-irradiation damage, to generate values of a = 7.2159(7) Angstroms, b = 8.5847(8) Angstroms, c = 13.5715(13) Angstroms, beta = 99.492(4) degrees, V = 829.18(23) after approximately five months. The Am(IO(3))(3) crystals have also been characterized by Raman spectroscopy and the spectral results compared to those for Cm(IO(3))(3). Three strong Raman bands were observed for both compounds and correspond to the I-O symmetric stretching of the three crystallographically distinct iodate anions. The Raman profile suggests a lack of interionic vibrational coupling of the I-O stretching, while intraionic coupling provides symmetric and asymmetric components that correspond to each iodate site. Photoluminescence data for both Am(IO(3))(3) and Cm(IO(3))(3) are reported here for the first time. Assignments for the electronic levels of the actinide cations were based on these photoluminescence measurements and indicate the presence of vibronic coupling between electronic transitions and IO(3)(-) vibrational modes in both compounds.  相似文献   

12.
Phase equilibria have been derived for the isothermal section of the Ta-V-Ge system at 1500 °C (for concentrations <45 at% Ge) on the basis of X-ray powder diffraction, EPMA and TEM analyses of argon arc melted alloys annealed in high vacuum at 1500 °C up to 200 hours. Four ternary phases have been identified within the isothermal section, out of which three were characterized by Rietveld refinement of X-ray powder diffraction data. τ(1)-(Ta(1-x)V(x))(5)Ge(3) (0.21 ≤ x ≤ 0.63) adopts the Mn(5)Si(3)-type and τ(2)-Ta(Ta(x)V(1-x-y)Ge(y))(2), x = 0.02, y = 0.12 was found to be a MgZn(2)-type Laves phase. Detailed transmission electron microscopy (TEM) in several crystallographic directions confirmed lattice parameters and crystal symmetry of this phase and rejected the presence of any superstructure. τ(3)-Ta(9-x+y)V(4+x-y-z)Ge(1+z), x = 0.32, y = 0.51, z = 0.98 crystallizes with the Nb(9)Co(4)Ge-type, whereas the structure of τ(4) is not yet known. Although a MgCu(2)-type cubic Laves phase is not present in the Ta-V binary at this temperature, additions of Ge stabilize this phase in the ternary system: C15-Ta(Ta(x)V(1-x-y)Ge(y))(2), x = 0.04, y = 0.05. V(11)Ge(8) (Cr(11)Ge(8) type) shows a large solubility up to (Ta(x)V(1-x))(11)Ge(8), x = 0.64 at 1500 °C.  相似文献   

13.
A structural study of the thermal evolution of Ni(0.69)Cr(0.31)(OH)(2)(CO(3))(0.155) x nH(2)O into NiO and tetragonal NiCr(2)O(4) is reported. The characteristic structural parameters of the two coexisting crystalline phases, as well as their relative abundance, were determined by Rietveld refinement of powder x-ray diffraction (PXRD) patterns. The results of the simulations allowed us to elucidate the mechanism of the demixing process of the oxides. It is demonstrated that nucleation of a metastable nickel chromite within the common oxygen framework of the parent Cr(III)-doped bunsenite is the initial step of the cationic redistribution. The role that trivalent cations play in the segregation of crystalline spinels is also discussed.  相似文献   

14.
SrSnO3 was synthesized by the polymeric precursor method with elimination of carbon in oxygen atmosphere at 250 °C for 24 h. The powder precursors were characterized by TG/DTA and high temperature X-ray diffraction (HTXRD). After calcination at 500, 600 and 700 °C for 2 h, samples were evaluated by X-ray diffraction (XRD), infrared spectroscopy (IR) and Rietveld refinement of the XRD patterns for samples calcined at 900, 1,000 and 1,100 °C. During thermal treatment of the powder precursor ester combustion was followed by carbonate decomposition and perovskite crystallization. No phase transition was observed as usually presented in literature for SrSnO3 that had only a rearrangement of SnO6 polyhedra.  相似文献   

15.
We report the crystal structure of L-arginine, one of the last remaining natural amino acids for which the crystal structure has never been determined; structure determination was carried out directly from powder X-ray diffraction (XRD) data, exploiting the direct-space genetic algorithm technique for structure solution followed by Rietveld refinement.  相似文献   

16.
The X-ray structure of Sc(3)C(82) is redetermined by the MEM/Rietveld method by using synchrotron radiation powder data at SPring-8, where the C(2) encapsulated structure available to discuss the Sc-Sc interatomic distances has been determined. The encapsulated three scandium atoms form a triangle shape. A spherical charge distribution originating from the C(2) molecule is located at the center of the triangle. Interatomic distances between Sc and Sc are 3.61(3) A in the triangle. The distance between Sc and the center of the C(2) molecule is 2.07(1) A.  相似文献   

17.
A new aluminophosphate, MIL-34, is investigated from its as-synthesized structure to its calcined microporous form. Single-crystal X-ray diffraction measurements on the as-synthesized MIL-34 (Al(4)(PO(4))(4)OH x C(4)H(10)N, space group P-1, a = 8.701(3) A, b = 9.210(3) A, c = 12.385(3) A, alpha = 111.11(2) degrees, beta = 101.42(2) degrees, gamma = 102.08(2) degrees, V = 863.8(4) A(3), Z = 2, R = 3.8%) reveal a 3-D open framework where Al atoms are in both tetrahedral and trigonal bipyramidal coordinations. It contains a 2-D pore system defined by eight rings where channels along [100] cross channels running along [010] and [110]. CBuA molecules are trapped at their intersection. (27)Al, (31)P, and (1)H MAS NMR spectroscopies corroborate these structural features. Calcination treatments of a powder sample of the as-synthesized MIL-34 indicate its transformation into the related template-free structure that is stable up to 1000 degrees C. Lattice energy minimizations are then used in order to anticipate the crystal structure of the calcined MIL-34, starting with the knowledge of the as-synthesized structure exclusively. Energy minimizations predict a new regular zeotype structure (AlPO(4), space group P-1, a = 8.706 A, b = 8.749 A, c = 12.768 A, alpha = 111.17 degrees, beta = 97.70 degrees, gamma = 105.14 degrees, V = 846.75 A(3), Z = 2) together with a thermodynamic stability similar to that of existing zeotype AlPOs. Excellent agreement is observed between the diffraction pattern calculated from the predicted calcined MIL-34 and the experimental X-ray powder diffraction pattern of the calcined sample. Finally, the atomic coordinates and cell parameters of the calcined MIL-34 predicted from the simulations are used to perform the Rietveld refinement of the calcined sample powder pattern, further corroborated by (27)Al and (31)P NMR measurements. This unique combination of experiment and simulation approaches is an interesting and innovative strategy in materials sciences, where simulations articulate the prediction of a possible template-free framework from its as-synthesized templated form. This is especially valuable when straightforward characterizations of the solid of interest with conventional techniques are not easy to carry out.  相似文献   

18.
Weakly agglomerated nanocrystalline scandia doped tin oxide powders with high surface area (170-220 m(2)/g) and uniform size (3-4 nm) were synthesized for the first time by a two-step hydrothermal process in the presence of urea, followed by the calcination between 500 and 1200 degrees C. The structure and texture of the binary oxide system were characterized by thermogravimetry and differential thermal analysis, Brunauer-Emmett-Teller-specific surface area analysis, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. A metastable scandium tin oxide solid solution in tetragonal structure was formed for the scandia content lower than 6 mol % as the samples were calcined at 800 degrees C, and the excess Sc atoms were dispersed at the surface of the crystallites above this limit. The solid solution was metastable, so scandium migrated toward the surface region of the crystallites and produced a second phase of Sc(4)Sn(3)O(12) during calcining at high temperatures over 1000-1200 degrees C. In the case of the samples with higher dopant concentration (>15 mol %), the calcination at the temperature between 500 and 800 degrees C caused the precipitation of Sc(2)O(3), and the calcination over 1000-1200 degrees C led to the formation of more Sc(4)Sn(3)O(12). Textural analysis showed that doping an appropriate amount of Sc(2)O(3) into nanosized SnO(2) could effectively inhibit the grain growth and stabilize the surface area against high-temperature calcinations below 1000 degrees C. CO gas-sensing property measurements revealed that the dispersion of Sc at the surfaces of the SnO(2) nanocrystallites could improve the CO sensitivity significantly, and the pellet sample with scandia content of 10 mol % sintered at 800 degrees C showed the best CO gas-sensing property in the operation temperature range of 300-400 degrees C. On the basis of the structural and textural analysis, the correlation between the structure/texture and the sensitivity to CO for the as-calcined (SnO(2))(1-x)(Sc(2)O(3))(x) nanocrystallites has been established and explained.  相似文献   

19.
利用琥珀酸为鳌合剂的湿化学法成功合成了一系列锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2,在合成过程中改变琥珀酸与金属离子摩尔比(R)并研究了这一参数对合成LiNi1/3Mn1/3Co1/3O2材料物理及电化学性质的影响.采用热重、X射线衍射、Rietveld精修、扫描电镜以及超导量子干涉仪对反应机理、材料的结构、形貌以及磁学性质进行了详细表征.得到最佳合成条件为R=1,此时LiNi1/3Mn1/3Co1/3O2的阳离子混排度最低.此外,通过Rietveld精修得到该材料阳离子混排度的结果与通过磁学方法得到的结果定量相符,如对于在R=1条件下合成的样品,Rietveld精修结果显示其阳离子混排度为1.85%,而超导量子干涉仪的测试结果为1.80%.当充放电区间为3.0-4.3V,电流密度为0.2C(1C=160mA·g-1)时,该样品的首次放电容量为161mAh·g-1,库仑效率为93.1%,经过50次循环后,容量保持率可达91.3%.  相似文献   

20.
Despite the widespread use of gamma-Al2O3, there is still considerable disagreement over the nature of its structure due to both its poor crystallinity and differing preparation techniques during experimentation. Using density-functional theory (DFT) calculations and Rietveld simulations and refinement, the structure of three spinel-related models and a recently proposed nonspinel model were studied in reference to synchrotron X-ray powder diffraction (SXPD) patterns. The spinel-based structural models represent the structural features of gamma-Al2O3 better than the nonspinel model. The major failure of the nonspinel model is that the model cannot reproduce the SXPD reflection originating from tetrahedral aluminum. The Rietveld-refined spinel model can accurately reproduce the lattice parameters and other structural features of gamma-Al2O3, and it can generate a consistent diffraction peak at 2theta which lies between the splitting peaks of the experimental pattern that are originated from the disordered tetrahedral aluminum cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号