首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research is to investigate the pure axial shear problem for a circular cylindrical tube composed of isotropic hyperelastic incompressible materials with limiting chain extensibility. Two popular models that account for hardening at large deformations are examined. These involve a strain-energy density which depends only on the first invariant of the Cauchy–Green tensor. In the limit as a polymeric chain extensibility tends to infinity, all of these models reduce to the classical neo-Hookean form. The stress fields and axial displacements are characterized for each of these models. Explicit closed-form analytic expressions are obtained. The results are compared with one another and with the predictions of the neo-Hookean model. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A new general constitutive model in terms of the principal stretches is proposed to reflect limiting chain extensibility resulting in severe strain-stiffening for incompressible, isotropic, homogeneous elastic materials. The strain-energy density involves the logarithm function and has the general Valanis–Landel form. For specific functions in the Valanis–Landel representation, we obtain particular strain-energies, some of which have been proposed in the recent literature. The stress–stretch response in some basic homogeneous deformations is described for these particular strain-energy densities. It is shown that the stress response in these deformations is similar to that predicted by the Gent model involving the first invariant of the Cauchy–Green tensor. The models discussed here depend on both the first and second invariants.   相似文献   

3.
The purpose of this research is to investigate the basic issues that arise when generalized plane strain deformations are superimposed on anti-plane shear deformations in isotropic incompressible hyperelastic materials. Attention is confined to a subclass of such materials for which the strain-energy density depends only on the first invariant of the strain tensor. The governing equations of equilibrium are a coupled system of three nonlinear partial differential equations for three displacement fields. It is shown that, for general plane domains, this system decouples the plane and anti-plane displacements only for the case of a neo-Hookean material. Even in this case, the stress field involves coupling of both deformations. For generalized neo-Hookean materials, universal relations may be used in some situations to uncouple the governing equations. It is shown that some of the results are also valid for inhomogeneous materials and for elastodynamics.  相似文献   

4.
The classical constitutive modeling of incompressible hyperelastic materials such as vulcanized rubber involves strain-energy densities that depend on the first two invariants of the strain tensor. The most well-known of these is the Mooney-Rivlin model and its specialization to the neo-Hookean form. While each of these models accurately predicts the mechanical behavior of rubber at moderate stretches, they fail to reflect the severe strain-stiffening and effects of limiting chain extensibility observed in experiments at large stretch. In recent years, several constitutive models that capture the effects of limiting chain extensibility have been proposed. Here we confine attention to two such phenomenological models. The first, proposed by Gent in 1996, depends only on the first invariant and involves just two material parameters. Its mathematical simplicity has facilitated the analytic solution of a wide variety of basic boundary-value problems. A modification of this model that reflects dependence on the second invariant has been proposed recently by Horgan and Saccomandi. Here we discuss the stress response of the Gent and HS models for some homogeneous deformations and apply the results to the fracture of rubber-like materials. Attention is focused on a particular fracture test, namely the trousers test where two legs of a cut specimen are pulled horizontally apart. It is shown that the cut position plays a key role in the fracture analysis, and that the effect of the cut position depends crucially on the constitutive model employed. For stiff rubber-like or biological materials, it is shown that the influence of the cut position is diminished. In fact, for linearly elastic materials, the critical driving force for fracture is independent of the cut position. It is also shown that the limiting chain extensibility models predict finite fracture toughness as the cut position approaches the edge of the specimen whereas classical hyperelastic models predict unbounded toughness in this limit. The results are relevant to the structural integrity of rubber components such as vibration isolators, vehicle tires, earthquake bearings, seals and flexible joints.  相似文献   

5.
Molecular constitutive models for rubber based on non-Gaussian statistics generally involve the inverse Langevin function. Such models are widely used since they successfully capture the typical strain-hardening at large strains. Limiting chain extensibility constitutive models have also been developed on using phenomenological continuum mechanics approaches. One such model, the Gent model for incompressible isotropic hyperelastic materials, is particularly simple. The strain-energy density in the Gent model depends only on the first invariant I 1 of the Cauchy–Green strain tensor, is a simple logarithmic function of I 1 and involves just two material parameters, the shear modulus μ and a parameter J m which measures a limiting value for I 1−3 reflecting limiting chain extensibility. In this note, we show that the Gent phenomenological model is a very accurate approximation to a molecular based stretch averaged full-network model involving the inverse Langevin function. It is shown that the Gent model is closely related to that obtained by using a Padè approximant for this function. The constants μ and J m in the Gent model are given in terms of microscopic properties. Since the Gent model is remarkably simple, and since analytic closed-form solutions to several benchmark boundary-value problems have been obtained recently on using this model, it is thus an attractive alternative to the comparatively complicated molecular models for incompressible rubber involving the inverse Langevin function. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
This paper is concerned with investigation of the effects of strain-stiffening for the classical problem of plane strain bending by an end moment of a rectangular beam composed of an incompressible isotropic nonlinearly elastic material. For a variety of specific strain-energy densities that give rise to strain-stiffening in the stress–stretch response, the stresses and resultant moments are obtained explicitly. While such results are well known for classical constitutive models such as the Mooney-Rivlin and neo-Hookean models, our primary focus is on materials that undergo severe strain-stiffening in the stress–stretch response. In particular, we consider in detail two phenomenological constitutive models that reflect limiting chain extensibility at the molecular level and involve constraints on the deformation. The amount of bending that beams composed of such materials can sustain is limited by the constraint. Potential applications of the results to the biomechanics of soft tissues are indicated.  相似文献   

7.
The purpose of this paper is to investigate the effects of strain-stiffening for the classical problems of axial and azimuthal shearing of a hollow circular cylinder composed of an incompressible isotropic non-linearly elastic material. For some specific strain-energy densities that give rise to strain-stiffening in the stress–stretch response, the stresses and resultant axial forces are obtained in explicit closed form. While such results are well known for classical constitutive models such as the Mooney–Rivlin and neo-Hookean models, our main focus is on materials that undergo severe strain-stiffening in the stress–stretch response. In particular, we consider in detail two phenomenological constitutive models that reflect limiting chain extensibility at the molecular level and involve constraints on the deformation. The amount of shearing that tubes composed of such materials can sustain is limited by the constraint. Numerical results are also obtained for an exponential strain-energy that exhibits a less abrupt strain-stiffening effect. Potential applications of the results to the biomechanics of soft tissues are indicated.  相似文献   

8.
Constitutive models are proposed for compressible isotropic hyperelastic materials that reflect limiting chain extensibility. These are generalizations of the model proposed by Gent for incompressible materials. The goal is to understand the effects of limiting chain extensibility when the compressibility of polymeric materials is taken into account. The basic homogeneous deformation of simple tension is considered and simple closed-form relations for the deformation characteristics are obtained for slightly compressible materials. An explicit first-order approximation is obtained for the lateral contraction and for the Poisson function in terms of the axial extension which is shown to be valid for each of two specific compressible versions of the Gent model. One of the main results obtained is that the effect of limiting chain extensibility is to stiffen the material relative to the neo-Hookean compressible case. Mathematics Subject Classifications (2000) 74B20, 74G55.  相似文献   

9.
In the context of the theory of non-linear elasticity for rubber-like materials, the problem of finite extension and torsion of a circular bar or tube has been widely investigated. More recently, this problem has attracted considerable attention in studies on the biomechanics of soft tissues and has been applied, for example, to examine the mechanical behavior of passive papillary muscles of the heart. A recent study in non-linear elasticity was concerned specifically with the effects of strain-stiffening on the response of solid circular cylinders in the combined deformation of torsion superimposed on axial extension. The cylinders are composed of incompressible isotropic non-linearly elastic materials that undergo severe strain-stiffening in the stress–stretch response. For two specific material models that reflect limiting chain extensibility at the molecular level, it was shown that, in the absence of an additional axial force, a transition value γ=γt of the axial stretch exists such that for γ<γt, the stretched cylinder tends to elongate on twisting whereas for γ>γt, the stretched cylinder tends to shorten on twisting. These results are in sharp contrast with those for classical models for rubber such as the Mooney–Rivlin (and neo-Hookean) models that predict that the stretched circular cylinder always tends to further elongate on twisting. Here we investigate similar issues for fiber-reinforced transversely isotropic circular cylinders. We consider a class of incompressible anisotropic materials with strain-energy densities that are of logarithmic form in the anisotropic invariant. These models reflect limited fiber extensibility and in the biomechanics context model the stretch induced strain-stiffening of collagen fibers on loading. They have been shown to model the mechanical behavior of fiber-reinforced rubber and many fibrous soft biological tissues. The consideration of anisotropy leads to a more elaborate mechanical response than was found for isotropic strain-stiffening materials. The results obtained here have important implications for extension–torsion tests for fiber-reinforced materials, for example in the development of accurate extension–torsion test protocols for determination of material properties of soft tissues.  相似文献   

10.
An unconstrained, non-linearly elastic, semi-infinite solid is maintained in a state of large static plane strain. A power-law relation between the pre-stretches is assumed and it is shown that this assumption is well motivated physically and is likely to describe the state of pre-stretch for a wide class of materials. A general class of strain-energy functions consistent with this assumption is derived. For this class of materials, the secular equation for incremental surface waves and the bifurcation condition for surface instability are shown to reduce to an equation involving only ordinary derivatives of the strain-energy equation. A compressible neo-Hookean material is considered as an example and it is found that finite compressibility has little quantitative effect on the speed of a surface wave and on the critical ratio of compression for surface instability.  相似文献   

11.
Rubber-like materials and soft tissues exhibit a significant stiffening or hardening in their stress-strain curves at large strains. Considerable progress has been made recently in the phenomenological modeling of this effect within the context of isotropic hyperelasticity. In particular, constitutive models reflecting limiting chain extensibility at the molecular level have been used to accurately capture strain-hardening. Here we generalize such models to isotropic thermoelasticity. We also show that specific non-polynomial strain-energies for both hyperelastic and thermoelastic materials can be obtained on using a modification of a systematic scheme of Rivlin and Signorini. The Rivlin-Signorini method was based on approximation of the strain-energy density function by polynomials whereas here we use the more general class of rational functions to approximate the material response functions. We then propose a simple generalization to thermoelasticity of a constitutive model for incompressible hyperelastic materials reflecting limiting chain extensibility due to Gent (Rubber Chem. Technol. 69 (1996) 59-61). For this new thermoelastic constitutive model we investigate the inhomogeneous deformation problem of axial shear of a circular cylindrical tube.  相似文献   

12.
We consider an incompressible nonlinearly elastic material in which a matrix is reinforced by strong fibers, for example fibers of nylon or carbon aligned in one family of curves in a rubber matrix. Rather than adopting the constraint of fiber inextensibility as has been previously assumed in the literature, here we develop a theory of fiber-reinforced materials based on the less restrictive idea of limiting fiber extensibility. The motivation for such an approach is provided by recent research on limiting chain extensibility models for rubber. Thus the basic idea of the present paper is simple: we adapt the limiting chain extensibility concept to limiting fiber extensibility so that the usual inextensibility constraint traditionally used is replaced by a unilateral constraint. We use a strain-energy density composed with two terms, the first being associated with the isotropic matrix or base material and the second reflecting the transversely isotropic character of the material due to the uniaxial reinforcement introduced by the fibers. We consider a base neo-Hookean model plus a special term that takes into account the limiting extensibility in the fiber direction. Thus our model introduces an additional parameter, namely that associated with limiting extensibility in the fiber direction, over previously investigated models. The aim of this paper is to investigate the mathematical and mechanical feasibility of this new model and to examine the role played by the extensibility parameter. We examine the response of the proposed models in some basic homogeneous deformations and compare this response to those of standard models for fiber reinforced rubber materials. The role of the strain-stiffening of the fibers in the new models is examined. The enhanced stability of the new models is then illustrated by investigation of cavitation instabilities. One of the motivations for the work is to apply the model to the biomechanics of soft tissues and the potential merits of the proposed models for this purpose are briefly discussed.  相似文献   

13.
This paper is concerned with investigation of the effects of strain-stiffening on the response of solid circular cylinders in the combined deformation of torsion superimposed on axial extension. The cylinders are composed of incompressible isotropic nonlinearly elastic materials. Our primary focus is on materials that undergo severe strain-stiffening in the stress-stretch response. In particular, we consider two particular phenomenological constitutive models for such materials that reflect limiting chain extensibility at the molecular level. The axial stretch γ and twist that can be sustained in cylinders composed of such materials are shown to be constrained in a coupled fashion. It is shown that, in the absence of an additional axial force, a transition value γ=γ t of the axial stretch exists such that for γ<γ t , the stretched cylinder tends to elongate on twisting whereas for γ>γ t , the stretched cylinder tends to shorten on twisting. These results are in sharp contrast with those for classical models such as the Mooney-Rivlin (and neo-Hookean) models that predict that the stretched circular cylinder always tends to further elongate on twisting. We also obtain results for materials modeled by the well-known exponential strain-energy widely used in biomechanics applications. This model reflects a strain-stiffening that is less abrupt than that for the limiting chain extensibility models. Surprisingly, it turns out that the results in this case are somewhat more complicated. For a fixed stiffening parameter, provided that the stretch is sufficiently small, the stretched bar always tends to elongate on twisting in the absence of an additional axial force. However, for sufficiently large stretch, the cylinder tends to shorten on undergoing sufficiently small twist but then tends to elongate on further twisting. These results are of interest in view of the widespread use of exponential models in the context of the mechanics of soft biological tissues. The special case of pure torsion is also briefly considered. In this case, the resultant axial force required to maintain pure torsion is compressive for all the models discussed here. In the absence of such a force, the bar would elongate on twisting reflecting the celebrated Poynting effect.   相似文献   

14.
15.
We present an mechanical study of a vascular prosthesis subjected to finite radial expansion, torsion and circular shearing. The material strain-energy function is expressed in the form of the fibre-reinforced neo-Hookean. The governing equations are solved analytically and the results present effects of the combined deformation on the stress distributions.  相似文献   

16.
The mechanical modeling of rubber-like materials within the framework of nonlinear elasticity theory is well established. The application of such modeling to soft biomaterials is currently the subject of intense investigation. For soft biomaterials it is well known that exponential strain energy density models are particularly useful as they reflect the typical J-shaped stress-stretch stiffening response that is observed experimentally. The most celebrated of these models for isotropic hyperelastic materials are those of Fung and Demiray which depends only on the first strain invariant and its generalization by Vito that depends on both strain invariants. In the limit as the strain-stiffening parameter tends to zero, one recovers the neo-Hookean and Mooney–Rivlin models that are linear functions of the invariants. Here we apply these models to the analysis of the fracture or tearing of soft biomaterials. Attention is focused on a particular fracture test namely the trousers test where two legs of a cut specimen are pulled horizontally apart out of the plane of the test piece. It is shown that, in general, the location of the cut in the specimen plays a key role in the fracture analysis, and that the effect of the cut position depends crucially on the constitutive model employed. This dependence is characterized explicitly for the strain-stiffening exponential constitutive models considered. In contrast to the situation for rubber, our findings show that the critical driving force and fracture toughness in tearing of some soft biomaterials in the trousers test are virtually independent of the cut position.  相似文献   

17.
This paper presents a strain energy density for isotropic hyperelastic materials. The strain energy density is decomposed into a compressible and incompressible component. The incompressible component is the same as the generalized Mooney expression while the compressible component is shown to be a function of the volume invariant J only. The strain energy density proposed is used to investigate problems involving incompressible isotropic materials such as rubber under homogeneous strain, compressible isotropic materials under high hydrostatic pressure and volume change under uniaxial tension. Comparison with experimental data is good. The formulation is also used to derive a strain energy density expression for compressible isotropic neo-Hookean materials. The constitutive relationship for the second Piola–Kirchhoff stress tensor and its physical counterpart, involves the contravariant Almansi strain tensor. The stress stretch relationship comprises of a component associated with volume constrained distortion and a hydrostatic pressure which results in volumetric dilation. An important property of this constitutive relationship is that the hydrostatic pressure component of the stress vector which is associated with volumetric dilation will have no shear component on any surface in any configuration. This same property is not true for a neo-Hookean Green’s strain–second Piola–Kirchhoff stress tensor formulation.  相似文献   

18.
The propagation of Love waves along the boundary between a half-space and a layer of different pre-stressed material is examined for incompressible isotropic elastic materials. The secular equation is obtained for a general strain-energy function and analysed for particular deformations and materials. For the neo-Hookean strain-energy function, numerical results are obtained to illustrate the dependence of the wavespeed on the wave number and on the deformation.  相似文献   

19.
In this paper, we first describe a homogenization methodology with the aim of establishing strain gradient constitutive relations for heterogeneous materials. The methodology presented in this work includes two main steps. The first one is the construction of the average strain-energy density for a well-chosen RVE by using a homogenization technique. The second one is the transformation of the obtained average strain-energy density to that for the continuum. An important characteristic of this method is its self-consistency with respect to the choice of the RVE: the strain gradient constitutive law built by using the present method is independent of the size and the form of the RVE. In the frame of this homogenization procedure, we have constructed a strain gradient constitutive relation for a two-dimensional elastic material with many microcracks by adopting the self-consistent scheme. It was shown that the effective behavior of cracked solids depends not only on the crack density but also on the average crack size with which the strain gradient is associated. The proposed constitutive relation provides a starting point for the development of an evolution law of damage including strain gradient effect, which will be presented in the second part of this work.  相似文献   

20.
A new method is developed to determine the dominant asymptotic stress and deformation fields near the tip of a Mode-I traction free plane stress crack. The analysis is based on the fully nonlinear equilibrium theory of incompressible hyperelastic solids. We show that the dominant singularity of the near tip stress field is governed by the asymptotic solution of a linear second order ordinary differential equation. Our method is applicable to any hyperelastic material with a smooth work function that depends only on the trace of the Cauchy-Green tensor and is particularly useful for materials that exhibit severe strain hardening. We apply this method to study two types of soft materials: generalized neo-Hookean solids and a solid that hardens exponentially. For the generalized neo-Hookean solids, our method is able to resolve a difficulty in the previous work by Geubelle and Knauss (1994a). Our theoretical results are compared with finite element simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号