首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of TsiSiMe2H (I) (Tsi = (Me3Si)3C) with I2 or with a molar equivalent of ICl gives the iodide TsiSiMe2I (II) in hydroxylic media (MeOH, CH3CO2H, CF3CO2H) as it does in CCl4. The reaction with I2 is very fast in CF3CO2H, but in MeOH is only about as fast as in CCl4. The iodide II reacts with ICl in MeOH to give a mixture of TsiSiMe2OMe (III) and TsiSiMe2Cl (IV), but the reaction is markedly slower than that in CCl4 (in which IV is formed). The hydride I also reacts with INO3 in MeOH to give II, and the latter reacts with INO3 to give III. The reactions of TsiSiPh2H (V) and TsiSiPh2I (VI) with ICl in MeOH are markedly slower than those of I and II; even with one equivalent of ICl in MeOH, V gives a mixture of VI and the (rearranged) methoxide (Me3Si)2C(SiPh2Me)(SiMe2OMe) (VII). Reaction of VI with ICl in MeOH gives VII and the rearranged chloride (Me3Si)2C(SiPh2Me)(SiMe2Cl). The formation of methoxides in the reactions of the iodides II and VI with ICl in MeOH, and the rearrangements observed in the case of VI, are consistent with a mechanism involving an intermediate silicocation. Other mechanistic aspects are discussed.  相似文献   

2.
Oxo(trisyl)borane (Me3Si)3C? B?O as an Intermediate The acyclic trisylboranes R? B(OSiMe3)? Cl ( 4 a ) and R? B(OH)? H ( 5 a ) and the cyclic boranes (? RB? O? CO? CO? O? ) ( 1 a ) and (? RB? O? RB? O? SO2? O? ) ( 6 a ) [R = (Me3Si)3C, “Trisyl”] are thermolyzed in the gasphase to give well-defined products. The tris(trisyl)boroxine (? RB? O? )3 ( 2 a ) is formed from 4 a and 5 a at 140 and 160°C, respectively, besides Me3SiCl and H2, respectively, whereas the six-membered ring [? BMe? CH(SiMe3)? SiMe2? O? SiMe2? CH2? ] ( 8 ) is the product from 1 a and 6 a at 600 and 700°C, respectively, besides CO/CO2 and SO3, respectively. The oxoborane R? B?O is presumably a common intermediate. It is stabilized at the lower temperature by cyclotrimerization to give 2 and at the higher temperature by a sequence of several intramolecular steps: a 1,3-silyl shift along the chain C? B? O, an exchange of Me and Me3SiO along the chain Si? C? B, and a C? H addition to the B?C double bond; the steps can be rationalized by analogous known reactions. The gas-phase thermolysis at 600°C of the dioxaboracyclohexenes (? BR? O? CR′ = CH? CRR′? O? ) ( 7 b? d ; R = Me, iPr, tBu; R′ = Me) yields the boroxines (RBO)3 and the enones Me? CO? CH?CHR? Me; the cyclohexene 7 e (R = Me; R′ = CF3) is not decomposed at 600°C.  相似文献   

3.
Preparation and Some Properties of Silyl Derivatives of Hyponitrous Acid and of its Amides Bis(trimethylsilyl)hyponitrite Me3SiO? N?N? OSiMe3 ( 1 ) is formed by reaction of Ag2N2O2 with Me3SiCl and of (Me3Si)2NOLi with SO2Cl2. Tris(trimethylsilyl)-1-hydroxytriazen ( 2 ) is formed by reaction of (Me3Si)3N2Li and i-amyl nitrite. The thermolysis of 1 leads to nitrogen, trimethylsilanol, and hexamethyldisiloxane, the thermolysis of 2 leads to hexamethyldisiloxane and trimethylsilylazide. HO? N?N? NH2 could not be isolated as a product of protolysis of 2. 2 is converted into LiO? N?N? N(SiMe3)2 ( 4 ) by LiNR2 (R = Me, SiMe3), 4 is converted into MeO? N?N? N(SiMe3)2 ( 5 ) by Me2SO4. The thermolysis of 4 leads to LiN3 and (Me3Si)2O, the thermolysis of 5 leads to Me3SiN3 and Me3SiOMe.  相似文献   

4.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

5.
The compounds TsiSiR2X [Tsi = Me3Si)3C; R = Me, X = Cl, Br, I, or R = Ph, X = F, Cl, Br, I)] react with boiling 2 M MeONa-MeOH to give products of the type (Me3Si)2CHSiR2OMe. It is suggested that the reaction proceeds through an elimination, analogous to E2 eliminations of alkyl halides, involving synchronous attack of MeO? at an Me3Si group, liberation of X?, and formation of (Me3Si)2CSiR2. The compounds TsiSiPhMeF TsiSiPhCl2 react analogously to give (Me3Si)2CHSiPhMe(OMe) and (Me3Si)2CHSiPh(OMe)2 [tha latter presumably by solvolysis of the initially-formed (Me3Si)2CHSiPhCl(OMe)]. The compounds TsiSiMe2OMe and TsiSiMe3 do not react, while TsiSiMe2H gives TsiH. The compound TsiSiCl3 reacts with 0.1 M MeONa-MeOH to give the substitution and elmination products TsiSiCl2(OMe) and (Me3Si)2CHSi(OMe)3 in ca. 12 ratio.  相似文献   

6.
Migration of the Cl substituent takes place when (Me3Si)2C(SiMe2Cl)(SiEt2I) or (Me3Si)2C(SiEt2Cl)(SiMe2I) reacts with AgBF4, the product in each being a mixture of (Me3Si)2C(SiEt2Cl)(SiMe2F) and (Me3Si)2C(SiEt2F)(SiMe2Cl), and analogous migration of N3 occurs in the corresponding reaction of (Me3Si)2C-(SiEt2N3)(SiMe2Br). Anchimeric assistance by the N3 group facilitates the solvolysis of (Me3Si)2C(SiMe2N3)(SiMe2Br).  相似文献   

7.
Investigations on the Formation of Silylated iso-Tetraphosphanes We investigated the formation of iso-tetraphosphanes by reacting [Me(Me3Si)P]2PCl 4 , Me(Me3Si)P? P(Cl)? P(SiMe3)2 8 , Me(Me3Si)P? P(Cl)? P(SiMe3)(CMe3) 9 , [Me(Me3Si)P]2PCl 20 , Me3C(Me3Si)P? P(Cl)? P(SiMe3)2 21 , and [MeC(Me3Si)P]2PCl 22 with LiP(SiMe3)Me 1 , LiP(SiMe3)2 2 , and LiP(SiMe3)CMe3 3 , respectively, to elucidate possible paths of synthesis, the influence of substituents (Me, SiMe3, CMe3) on the course of the reaction, and the properties of the iso-tetraphosphanes. These products are formed via a substitution reaction at the P2Cl group of the iso-triphosphanes. However, with an increasing number of SiMe3 groups in the triphosphane as well as in reactions with LiP(SiMe3)Me, cleaving and transmetallation reactions become more and more important. The phosphides 1,2, and 3 attack the PC1 group of 4 yielding the iso-tetraphosphanes P[P(SiMe3)Me]3 5, [Me(Me3Si)P]2P? P(SiMe3)2 6 and [Me(Me3Si)P]2P? P(SiMe3)CMe3 7. I n reactions With 8 and 9, LiP(SiMe3)Me causes bond cleavage and mainly leads to Me(Me3Si)P? P(Me)? P(SiMe3)2 13 and Me(Me3Si)P? (Me)? P(SiMe3)CMe3 16, resp., and to monophosphanes; minor products are [Me(SiMe3)P]2P? P(SiMe3)2 6 and [Me(Me2Si)P]2P? P(SiMe3)CMe2 7. LiP(SiMe3)2 2 and LiP(SiMe3)CMe2 3 with 8 and 9 give Me(Me3,Si)P? P[P(SiMe3)2]2 10, Me(Me2Si)P? P[P(SiMe3)CMe2]? P(SiMe3)2 11, and Me(Me3Si)P? P[P(SiMe3)CMe3]2 12 as favoured products. With 20, LiP(SiMe3)2 2 forms P[P(SiMe3)2]3 28. Bond cleavage products are obtained in reactions of 20 with 1 and 2, of 21 with 1, 2, and 3, and of 22 with 1 and 2. P[P(SiMe3)CMe3]3 23 is the main product in the reaction of 22 with LiP(SiMe3)CRle2 3. In the reactions of 22 with 1, 2, and 3 the cyclophosphanes P3(CMe3)2(SiMe3)25, P4[P(SiMe3)CMe3]2(CMe3)2 26, and P5(CMe3)4(SiMe3) 27 are produced. The formation of these rom- pounds begins with bond cleavage in a P- SiMe, group by means of the phosphides. The thermal stability of the iso-tetraphosphanes decreases with an increasing number of silyl groups in the molecule. At 20O°C compounds 5, 7, and 23 are crystals; also 6 is stable; however, 10, It, 12, and 28 decompose already.  相似文献   

8.
Investigations of the Reaction between the [Lithium(trimethylsilyl)amido]-methyl-trimethyl-silylamino-silane Me(Me3SiNLi)(Me3SiNH)SiH and different Electrophiles The lithium silylamide Me(Me3SiNLi)(Me3SiNH)SiH 1 reacts with chlorotrimethylsilan in the nonpolar solvent n-hexane to the N-substitution product Me[(Me3Si)2N](Me3SiNH)SiH 2 and to the cyclodisilazane [Me(Me3SiNH)Si—N(SiMe3)]2 3 nearly in same amounts. The reaction of 1 with chlorotrimethylstannane gives besides small amounts of the cyclodisilazane 3 the N-substitution product Me[(Me3Si)(Me3Sn)N](Me3SiNH)SiH 4 . By the reaction of 1 with trimethylsilyltriflate the cyclodisilazane 3 is obtained as the main product. Furthermore 2 and the cyclodisilazane 5 are formed. Ethylbromide shows no reaction with 1 under the same conditions. These results indicate the existence of an equilibrium of the lithium silylamide 1 , the silanimine Me(Me3SiNH)Si?N(SiMe3) and lithium hydride.  相似文献   

9.
Synthesis and Properties of Partially Silylated Tri- and Tetraphosphanes. Reaction of Lithiated Diphosphanes with Chlorophosphanes The reactions of Li(Me3Si)P? P(SiMe3)(CMe3) 1 , Li(Me3Si)P? P(CMe3)2 2 , and Li(Me3C)P? P(SiMe3)(CMe3) 3 with the chlorophosphanes P(SiMe3)(CMe3)Cl, P(CMe3)2Cl, or P(CMe3)Cl2 generate the triphosphanes [(Me3C)(Me3Si)P]2P(SiMe3) 4 , (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)2 6 , [(Me3C)2P]2P(SiMe3) 7 , and (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)Cl 8 . The triphosphane (Me3C)2P? P(SiMe3)? P(SiMe3)2 5 is not obtainable as easily. The access to 5 starts by reacting PCl3 with P(SiMe3)(CMe3)2, forming (Me3C)2 P? PCl2, which then with LiP(SiMe3)2 gives (Me3C)2 P? P(Cl)? P(SiMe3)2 11 . Treating 11 with LiCMe3 generates (Me3C)2P? P(H)? P(SiMe3)2 16 , which can be lithiated by LiBu to give (Me3C)2P? P(Li)? P(SiMe3)2 13 and after reacting with Me3SiCl, finally yields 5 . 8 is stable at ?70°C and undergoes cyclization to P3(SiMe3)(CMe3)2 in the course of warming to ambient temperature, while Me3SiCl is split off. 7 , reacting with MeOH, forms [(Me3C)2P]2PH. (Me3C)2P? P(Li)? P(SiMe3)2 18 , which can be obtained by the reaction of 5 with LiBu, decomposes forming (Me3C)2P? P(Li)(SiMe3), P(SiMe3)3, and LiP(SiMe3)2, in contrast to either (Me3C)2P? P(Li)? P(SiMe3)(CMe3) 19 or [(Me3C)2P]2PLi, which are stable in ether solutions. The Li phosphides 1 , 2 , and 3 with BrH2C? CH2Br form the n-tetraphosphanes (Me3C)(Me3Si)P? [P(SiMe3)]2? P(SiMe3)(CMe3) 23 , (Me3C)2P? [P(SiMe3)]2? P(CMe3)2 24 , and (Me3C)(Me3Si)P? [P(CMe3)]2? P(SiMe3)(CMe3) 25 , respectively. Li(Me3Si)P? P(SiMe3)2, likewise, generates (Me3Si)2P? [P(SiMe3)]2? P(SiMe3)2 26 . Just as the n-triphosphanes 4 , 5 , 6 , and 7 , the n-tetraphosphanes 23 , 24 , and 25 can be isolated as crystalline compounds. 23 , treated with LiBu, does nor form any stable n-tetraphosphides, whereas 24 yields (Me3C)2P? P(Li)? P(SiMe3)? P(CMe3)2, that is stable in ethers. With MeOH, 24 , forms crystals of (Me3C)2P? P(H)? P(SiMe3)? P(CMe3)2.  相似文献   

10.
The synthesis and structural characterization of bulkier variations of the very common organometallic compound MSi(SiMe3)3, namely MSi(SiMe3)(SiPh3)2 3 and MSi(SiPh3)3 [M = Li ( 1 ), K ( 5 )] are presented, which can be synthesized via a step by step exchange of SiMe3 groups by bulkier SiPh3 groups. This synthetic route is high selective and is performed in good yields via the silanes Si(SiMe3)2(SiPh3)2 ( 2 ) and Si(SiMe3)(SiPh3)3 ( 4 ). Additionally, the corresponding silanes HSi(SiMe3)(SiPh3)2 ( 6H ) and HSi(SiPh3)3 ( 7H ) are obtained via the reaction of 3 and 5 with aqueous HCl, respectively. Oxidation of 6H with CCl4 gives the chlorsilane Cl‐Si(SiMe3)(SiPh3)2 ( 6Cl ). The bulkiest chlorsilane Cl–Si(SiPh3)3 ( 7 ) is obtained by the reaction of 5 with ECl2 (E = Sn, Pb).  相似文献   

11.
The potential of trichloroisocyanuric acid (TCCA) as a chlorination agent for efficient conversion of Si-H functional silanes and siloxanes to the corresponding Si-Cl functional moieties was explored. In comparison to methods using other chlorinating agents, TCCA is inexpensive, results in a much faster reaction and produces a high purity product with a conversion that is essentially quantitative. A variety of chloro derivatives of linear and cyclic structures have been synthesized from silicon hydrides using this reagent with impressive yields that typically exceed 90%: PhSiCl3 (97.5%); PhMeSiCl2 (95.5%); Ph3SiCl (97.5%); Vi3SiCl (98.7%); (EtO)3SiCl (99.7%); t-Bu3SiCl (∼100%); (MeClSiO)4 (86.5%); (MeClSiO)5 (95%); (MeClSiO)7 (96.5%); Ph(OEt)2SiCl (98%); ClMe2SiOSiMe2Cl (98.6%); ClMe2SiOSiMeClOSiMe2Cl (94.6%); ClMe2Si(OSiMeCl)2OSiMe2C l (92.3%); (Me3SiO)3SiCl (97%); Me3SiOSiClPhOSiMe3 (99%); Me3SiO(SiMeClO)3SiMe3 (95.7%); ClSi(OSiMe3)2OSi(OSiMe3) 2Cl (93.6%).For monohydridosilanes, dichloromethane (CH2Cl2) was a suitable solvent in which nearly quantitative conversion was observed within several minutes following the addition of the silanes to TCCA. For certain cyclic and linear siloxanes, and especially silanes containing multiple hydrogen atoms on the same silicon for which the reaction is sluggish in CH2Cl2, tetrahydrofuran (THF) was the preferred solvent. For a sterically demanding silane that did not undergo chlorination even in THF viz., HSi(OSiMe3)2O-Si(OSiMe3)2H, 1,2-dichloroethane was the best solvent.  相似文献   

12.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

13.
Formation of the Cyclotetraphosphanes cis- und trans-P4(SiMe3)2(CMe3)2 in the Reaction of (Me3C)PCl2 with LiP(SiMe3)2 · 2 THF The mechanism of the reaction of (Me3C)PCl2 1 with LiP(SiMe3)2 · 2 THF 2 was investigated. With a mole ration of 1:1 at ?60°C quantitatively (Me3C)(Cl)P? P(SiMe3)2 3 is formed. This compound eliminates Me3SiCl on warming to 20°C, yielding Me3Si? P?P? CMe3 4 (can be trapped using 2,3-dimethyl-1,3-butadiene in a 4+2 cycloaddition), which dimerizes to produce the cyclotetraphosphanes cis-P4(SiMe3)2(CMe3)2 5 and trans-P4(SiMe3)2(CMe3)2 6 . Also with a mole ratio of 1:2 initially 3 is formed which remarkably slower reacts on to give [(Me3Si)2P]P2P? CMe3 8 . Remaining LiP(SiMe3)2 cleaves one Si? P bond of 8 producing (Me3)2P? P(CMe3)? P(SiMe3)2Li. Via a condensation to the pentaphosphide 10 and an elimination of LiP(SiMe3)2 from this intermediate, eventually trans-P4(SiMe3)2(CMe3)2 6 is obtained as the exclusive cyclotetra-phosphane product.  相似文献   

14.
The 1,3-bis(trimethylsilyl)propyne can be easily prepared by reductive silylation of HCCCH2OR (R = Me, SiMe3) by the Me3SiCl/Li/THF reagent.  相似文献   

15.
The reaction of compound Me2Si(NSiMe3)2Si(OH)Cl with Me2SiCl2 leads to the disiloxane Me2Si(NSiMe3)2Si(Cl)OSi(Me2)Cl (1). Hydrolysis of 1 in the presence of pyridine results in Me2Si(NSiMe3)2Si(OH)OSi(Me2)OH (2), which is allowed to react with SiCl4 to give cyclotrisiloxane [Me2Si(NSiMe3)2Si](OSiMe2)(OSiCl2)O (3). The treatment of 1 with (t-BuO)2Si(OH)2 forms cyclotrisiloxane [Me2Si(NSiMe3)2Si](OSiMe2)[OSi(Ot-Bu)2]O (4). Compound 3 is obtained as a crystalline solid while 4 is an oily liquid. The ring size of these new types of cyclotrisiloxanes with three different R2Si-units is confirmed by cryoscopy in benzene, 29Si NMR chemical shifts and in case of 3, additionally by a single X-ray diffraction study. The different electronegativities of the substituents in the R2Si-units lead to different bond lengths and bond angles within the Si3O3 cycle, which are discussed in detail in the molecular structure of 3.  相似文献   

16.
Concerning the Cleavage of Si? C Bonds in Si-methylated Carbosilanes The chances for the cleavage of Si? Me bonds (Me ? CH3) and Si? C? Si bonds in their molecular skeletons using ICl or ICl/AlBr3 are examined in 13 carbosilanes; i. e. (Me2Si? CH2)3 1 , 1,3,5,7-tetramethyl-1,3,5,7-tetrasilaadamantane 2 , (Me3Si? CH2)2SiMe2 3 , HC(SiMe3)3 4 , the 1,3,5,7-tetrasilaadamantane. carrying bhe ? CH2? SiMe, group at one Si atom 5 , the 1,3,5-trisilacyclohexane, carrying the ? CH2? SiNe3 group 6 , three derivatives of the 1,3,5-trisilacyclohexane, carrying SiMe3 groups at skeletal C atoms 7 , 8 , 9 , three derivatives of the 1,3,5-trisilacyclohexane, carrying CH3, groups at skeletal C atoms 10 10, 11 , 12 and 13 , derived from (Me2Si? CH2)3 having one ?CBr2 group. Using ICl one Me group at each Si atom in 1 can be split off successively, finally yielding (ClMeSi? CH2)3. 2 is transformed to the Si-chlorinated 1,3,5,7-tetrasilaadamantane. 3 , treated with ICl yields (ClMeSi? CH2)2SiMeCl, as 4 forms HC(SiMe2Cl)3. Higher chlorinated compounds can be obtained by using ICl and AlBr3 in catalytic amounts. Thus 1 leads to (Cl2Si? CH2)3, no ring-opening is observed. However, in the reaction of 1 with HBr/AlBr3 bromination at the Si atoms and ring-opening (ratio 1:1) proceed coincidently. The reaction of either 3 or (ClMe2Si? CH2)2SiMeCl with ICl/AlBr3 leads to (Cl2MeSi? CH2)2SiCl2, and (Me3Si)2CH3 forms (Cl2MeSi? )2CH2 similarly. The ? CH2? SiMe3 group in 5 and 6 is not cleaved off by ICl; the introduction of a Cl group at each Si atom is observed instead. Furthermore, 6 undergoes cleavage (≈8%) of the Si? C ring adjacent to the chain-substituted Si atom [formation of ClMe2Si? (CH2? SiMeCl)2CH2? SiMe2? CH2Cl]. 7 , 8 , 9 (having the ? SiMe3 group at the C atoms) react with ICl by splitting off one Si? Me group from each Si atom. In 7 we also observe the ring-opening to an amount of ≈25% [formation of (ClMe2Si)CH2? SiMeCl? CH2? SiMe2? CH2Cl]. In 8 (having two CH(SiMe3) groups the ring-opening reaction is reduced to about 5% [formation of ClMe2? CH(SiMe2Cl)? SiMeCl? CH(SiMe2Cl)? SiMe2? CH2Cl], while in 9 (having three CH(SiMe3) groups) it is not found at all. In 10 , 11 , 12 (having the CH3 group at the C atoms) ICl substitutes one Me group (formation of SiCl) at each Si atom (no ring-opening). The CBr2 group reduces the reactivity of 13 towards ICl. Only the split-off of one Me group at the Si atom in para-position to the CBr2 group is observed. Using ICl/AlBr3 higher chlorinated derivatives are obtained (no ring-opening). Most of the mentioned compounds were identified via their Si? H-containing derivatives, thus facilitating the chromatographic separation as well as the 1H-NMR-spectroscopic investigations.  相似文献   

17.
Lithium Hydridosilylamides R2(H)SiN(Li)R′ – Preparation, Properties, and Crystal Structures The hydridosilylamines R2(H)SiNHR′ ( 1 a : R = CHMe2, R′ = SiMe3; 1 b : R = Ph, R′ = SiMe3; 1 c : R = CMe3, R′ = SiMe3; 1 d : R = R′ = CMe3) were prepared by coammonolysis of chlorosilanes R2(H)SiCl with Me3SiCl ( 1 a , 1 b ) as well as by reaction of (Me3C)2(H)SiNHLi with Me3SiCl ( 1 c ) and Me3CNHLi with (Me3C)2(H)SiCl ( 1 d ). Treatment of 1 a–1 d with n-butyllithium in equimolar ratio in n-hexane resulted in the corresponding lithiumhydridosilylamides R2(H)SiN(Li)R′ 2 a–2 d , stable in boiling m-xylene. The amines and amides were characterized spectroscopically, and the crystal structures of 2 b–2 d were determined. The comparison of the Si–H stretching vibrations and 29Si–1H coupling constants indicates that the hydrogen atom of the Si–H group in the amides has a high hydride character. The amides are dimeric in the solid state, forming a planar four-membered Li2N2 ring. Strong (Si)H … Li interactions exist in 2 c and 2 d , may be considered as quasi tricyclic dimers. The ‘‘NSiHLi rings”︁”︁ are located on the same side of the central Li2N2 ring. In 2 b significant interactions occurs between one lithium atom and the phenyl substituents. Furthermore all three amides show CH3 … Li contacts.  相似文献   

18.
The Effect of the Substituents in (R3Si)2P–SiR2Cl on the Formation and the Properties of the Hexasilatetraphospha-adamantanes and their 31P-NMR Spectra The thermolysis of (Me3Si)2P–SiEt2Cl 4 at 300°C leads to the silylphosphanes with adamantane structure (Et2Si)x(Me2Si)6–x (x = 0–6), aside of (Me3Si)3P, (Et2MeSi) (Me3Si)2P, (Et2MeSi)2(Me3Si)P and Me3SiCl, Et2SiCl, Et2MeSiCl. Due to the different positions of the Et2Si-bridges in the adamantane cage the compounds featuring x = 2–4, form isomers. The thermolysis of (Me3Si)2P–SiEtMeCl 14 occurs analogously and leads to the adamantanes (EtMeSi)x (Me2Si)6–xP4 (x = 0–6). The introduction of the SiEtMe group causes the existence of chiralic isomers of the compounds featuring x = 2–6. From (Et3Si)2P–SiEt2Cl 24 (Et2Si)6P4 is obtained. The thermolyses of (Me3Si)2P–SiPh2Cl 25 and [(Me3Si)P–SiPh2]2 do not enable the formation of adamantanes with SiPh2-bridges. They rather lead to Me- and Ph-substituted trisilylphosphanes. The syntheses of the starting compounds 4, 14, 24 , and 25 are reported. The 31P-NMR spectra of silylphosphanes with adamantane structure show, that the linear increase of the 31P-chemical shift values as dependent on the rising number of Et groups, which is observed in partially Et-substituted methyltrisilylphosphanes, allows the prediction of the δ31P values of the specific P atoms in an adamantane cage, heeding both the position and the direction of the SiEt groups in the particular molecule.  相似文献   

19.
Reactions of carbon monoxide (CO) with tBu2MeSiLi and (E)‐(tBu2MeSi)(tBuMe2Si)C=Si(SiMetBu2)Li?2 THF ( 4 ) were studied both experimentally and computationally. Reaction of tBu2MeSiLi with CO in hexane yields the first stable tetra‐silyl di‐ketyl biradical [(tBu2MeSi)2COLi].2 ( 3 ). Reaction of 4 with CO yields selectively and quantitatively the first reported 1‐silaallenolate, (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OLi?THF ( 5 ). Both 3 and 5 were characterized by X‐ray crystallography and biradical 3 also by EPR spectroscopy. Silaallenolate 5 reacts with Me3SiCl to produce siloxy substituted 1‐silaallene (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OSiMe3. The reaction of 4 with CO provides a new route to 1‐silaallenes. The mechanisms of the reactions of tBuMe2SiLi and of 4 with CO were studied by DFT calculations.  相似文献   

20.
The first successful example of cobalt‐catalyzed reduction of N2 with Me3SiCl and Na as a reductant, under ambient reaction conditions, gives N(SiMe3)3, which can be readily converted into NH3. In this reaction system, 2,2′‐bipyridine (bpy) is found to work as an effective additive to improve substantially the catalytic activity. Co?N2 complexes bearing three Me3Si groups as ancillary ligands are considered to work as key reactive species based on DFT calculations. The DFT results also allow the proposal of a detailed reaction pathway for the transformation of N2 into N(SiMe3)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号