首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and properties of a series of trans-halocarbonylrhodium(I) complexes containing the phosphinoalkylorganosilicon ligands Me3SiCH2PPh2, Me3Si(CH2)3PPh2, and PPh2CH2(Me)Si(OSiMe2)3O have been investigated. The complexes could be prepared by an exchange reaction involving RhCl(CO)(PPh3)2 and the organosilicon ligands or in better yields by the reaction of Rh2Cl2(CO)4 with the ligands. Iodorhodium derivatives were obtained as the exclusive products in the latter reaction if a small amount of LiI was present. The catalytic activity of RhCl(CO)(PPh2CH2SiMe3)2 was similar to that of RhCl(CO)(PPh3)2 in the hydroformylation of hex-1-ene at 100°C and 1000 psi pressure of H2/CO. The catalytic properties of the iodo derivatives RhI(CO)L2 [L = Me3SiCH2PPh2, Me3Si(CH2)3PPh2, and PPh2CH2(Me)Si(OSiMe2)3O] varied considerably, with RhI(CO)(PPh2CH2SiMe3)2 producing an unexpectedly low linear/branched aldehyde product ratio.  相似文献   

2.
The addition of trimethylphosphane to five-membered metallacyclic vinylketone complexes of the type ArM(CO)2(HCCHCOR) (I) (Ar = η5-aromatic ring system: C5H5, C5H4Me, C5Me5; R = Me, Et, n-Bu; M = Mo, W) in pentane solution results in the formation of the ylidic metallacyclopropane complexes ArM(CO)2[(PMe3)-HCCH(COR)] (II). In these 1:1 adducts the three-membered ring is stabilized by an electron-donating phosphonium and an electron-attracting acyl substituent. The negative charge in the ylidic complexes II is localized on the central metal providing it with Lewis base properties. An extraordinary high electron density can be observed on the metal of the derivative C5H5W(CO)(PMe3)[(PMe3)HCCH-(COMe)] (III) which is formed by a 1:2 addition of C5H5W(CO)(C2H2)-(COMe) and PMe3. The metallacyclopropane complexes II and III are characterized by IR, 1H NMR, 13C NMR, 31P NMR and mass spectroscopy. For C5H5W(CO)2[(PMe3)HCCH(COMe)], the results of an X-ray structure determination are presented.  相似文献   

3.
Silicon-transition metallic silacyclobutanes CpFe(L2)Si(Me)CH2CH2CH2 [L = CO or Ph2MeP; or L2 = (CO)(Ph2MeP)] have been prepared and their reactions (substitution at Si or Fe, Si—Fe cleavage, or ring-opening) studied.  相似文献   

4.
Unstable transition metal compounds formed from hydridosilacyclobutanes are described: 1-methyl-1-silacyclobutane reacts with nonacarbonyldiiron to give the complexes [Fe(CO)4(H){Si(Me)CH2CH2CH2}] and [Fe{CH2CH2CH2Si(H)Me}(CO)4], and with bis(triphenylphosphine)(ethylene)platinum(0) to give [Pt(H)(PPh3)2{Si(Me)CH2CH2CH2}].  相似文献   

5.
The η-hexamethylbenzenehydridoruthenium(II) complexes RuHCl(η-C6Me6)L (L = PPh3 (11), AsPh3 (12), P(C6H4-p-F)3 (14), P(C6H4-p-Me)3 (15), P(C6H4-p-OMe)3 (16), P-t-BuPh2 (17), P-i-PrPh2 (18), P-i-Pr3 (19), PCy3 (20) and P-t-BuMe2 (21)) have been made by heating [RuCl2(η-C6Me6)]2, the ligand and sodium carbonate in propan-2-ol. The triarylphosphine complexes 11, 14 and 15 react with methyllithium to give aryl ortho-metallated hydridoruthenium(II) complexes such as RuH(o-C6H4PPh2)(η-C6Me6) (22) and 19 similarly gives the isopropyl cyclometallated complex RuH(CH2CHMeP-i-Pr2(η-C6Me6) (29) as a mixture of diastereomers. Reaction of 17 with methyllithium gives initially the t-butyl cyclometallated complex RuH(CH2CMe2PPh2)(η-C6Me6) (25) which isomerizes by a first order process (k0?.2 h?1 in C6D6 or THF-d8 at 50°C) to the aryl ortho-metallated complex RuH(o-C6H4P-t-BuPh)(η-C6Me6) (26). The similarly generated isopropyl cyclometallated complex RuH(CH2CHMePPh2)(η-C6Me6) (27) has not been isolated in a pure state owing to rapid isomerization to RuH(o-C6H4P-i-PrPh)(η-C6Me6) (28); both 27 and 28 exist as a pair of diastereomers. The formation of the cyclometallated complexes and the isomerizations are thought to involve intermediate 16-electron ruthenium(O) complexes Ru(η-C6Me6)L.  相似文献   

6.
The interaction of azobenzene and MnR(CO)5 (R  Me, Et, CH2Ph, CH2-C6Me5, COCF3, COCH2C6F5, COCH2OPh, Ph or C6F5) affords Mn(C6H4NNPh)-(CO)4, together with a binuclear complex Mn2(CO)6(C12H10N2) in some cases. The metallation reaction is shown to proceed most readily with Mn-(CH2Ph)(CO)5; with this reagent, the metallated complexes Mn(C6H4CH2PMe2)-(CO)3[PMe2(CH2Ph)] (two isomers) and Mn(C6H4CH2AsMe2(CO)4 have been obtained on treatment with EMe2(CH2Ph) (E  P and As, respectively).  相似文献   

7.
Analysis of product formation reveals that in the reaction of iodomethane and magnesium in anyl phenyl ether ethane and 1-butane are the major side products. The latter product is formed mainly by addition of methyl radicals to the terminal CH2 group of allyl phenyl ehter, followed by β-scission under extrusion of a phenoxy radical. This mechanismf is confirmed by an analysis of the CIDNP spectra during the reaction; CH3 radicals escaping from CH3 CH3 pairs and adding to allyl phenyl ether give rise to a very clear example of a second order CIDNP spectrum in the product 1-butane, while polarization in CH3C6H5O-CH-CHCH2 pairs, formed after α-H abstraction from allyl phenyl ether, leads to net effects in the products ethane (E) and 1-methylallyl phenyl ether (A).  相似文献   

8.
C5H5FeC5H4CH2NMe2 reacts with sodium chloropalladate(II) in the presence of sodium acetate to give the internally metallated binuclear species [Pd2X2 {C5H5FeC5H3CH2NMe2}2] (X = Cl). The corresponding iodide was prepared as were mononuclear species [Pd(acac) {C5H5FeC5H3CH2NMe2}] and [Pd-{C5H5FeC5H3CH2NMe2}L] L = PMe2Ph, AsMe2Ph, P(OMe)3 or PPh3. 1H NMR data are given.  相似文献   

9.
Controlled displacement of fluorine from perfluoro-1-azacyclo-hexene (I) by the nucleophilic reagents Me2NH, Et2NH, CH2CH2O(CH2)2NH, C6Cl5ONa, and (CF3)2NONa provides the derivatives (II) - (IV), respectively. The last of these can also be obtained by treatment of the parent compound (I) with mercuryII bistrifluoromethylnitroxide.  相似文献   

10.
The phosphine Ph2PCH2CH2Cl reacts with fac-[XMn(CO)3(dppm)] (X = Cl or Br) in refluxing toluene to give the complexes cis,cis-[XMn(CO)2(dppm)(Ph2PCH2CH2Cl)] (I). Treatment of those species with Na amalgam in THF leads to the alkyl complex [Ph2PCH2CH2Mn(CO)2(dppm)] (II), which does not react with CO under normal conditions but can be converted into cis,cis-[ClMn(CO)2(dppm)(PPh2Et)] by reacting with HCl (g) in ether. If the reduction of I with Na/Hg is carried out in the presence of CO the compound cis-[Ph2PCH2CH2(O)CMn(CO)2(dppm)] (III) is obtained. The latter has also been prepared directly from fac-[BrMn(CO)3(dppm)], Ph2PCH2CH2Cl, and Na/Hg in THF, and characterized by X-ray crystallography. The crystals are monoclinic, space group P21/n; refinement gave R = 0.053 for 2593 reflections with I ? 2.5σ(I). The reaction of the complex fac-[O3ClOMn(CO)3(dppm)] with Ph2PCH2CH2Cl in Cl2CH2 gives the salt fac-[Mn(CO)3(dppm)(Ph2PCH2CH2Cl)]ClO4 which isomerizes to mer-[Mn(CO)3(dppm)(Ph2PCH2CH2Cl)]ClO4 in boiling butanol. Both cationic carbonyl complexes give the acyl species III upon reduction with Na amalgam.  相似文献   

11.
The reactivity of the carbanion (CH2CO2Et)?, obtained from CH2(Br)CO2Et (I) by means of electrochemical reduction, on substrates such as CH2(Br)CH2CO2Et (II), CH2(Br)(CH2)2CO2Et (III) and CH2(Br)(CH2) 3CO2Me (IV), was studied in dimethylformamide solutions by means of polarography, cyclic voltammetry and coulometry at mercury and vitreous carbon electrodes. Evidence was found for coupling (diethyl glutarate (CH2)3(CO2Et)2 and diethyl adipate (CH2)4(CO2Et)2) and elimination reaction (ethyl acrylate CH2CHCO2Et and ethyl cyclopropancarboxylate CH2CH2CHCO2Et) compounds. In addition, the electrochemical reduction of the single esters (I)–(IV) was reported. The dependence of the percentage ratio among the various products obtained on the potential, the proton donor presence and the nature of the ester were investigated.  相似文献   

12.
Reaction of [PdCl2(PBut2Ph)]2 with silver acetate gives the internally metalated complex [PdCH2CMe2PButPh]2(μ-Cl)2. This reacts with TlC5H5 and LiC5Me5 with chloride-bridge cleavage to yield C5R5PdCH2PButPh (R = H, Me). The complex [PdCH2CMe2PBut2]2(μ-Cl)2,prepared from [PdCl2(PBut3)]2 and CH3COOAg, is analogously converted into C5R5PdCH2CMe2PBut2. The chloride complex C5H5Pd(PBut5Ph)CI does not eliminate HCl to form C5H5PdCH2CMe2PButPh.  相似文献   

13.
The reaction of the phosphonium metallates Me4P[C5R5(CO)(Me3P)MC(O)=CHC(O)R′] (M = W, R = H, R′ = Et (1a); M = Mo, R = Me, R′ = Me (1b)) with the silylating reagent Me3SiOSO2CF3 yields the neutral complexes C5R5(CO)(Me3P)MC(OSiMe3)=CHC(O)R (2a, 2b) bearing a chelating O(2), C(4)-trimethylsiloxybutenone ligand. The structure of the new compounds is established by the IR, 1H and 31P NMR spectra.  相似文献   

14.
Chelate complexes of the type (CO)4MnPMe2CH2Ch2SiX2 (X = Me, Cl) have been prepared from Na[Mn(CO)5] and HMn (CO)5, respectively, by two-step reactions with the ligands Me2PCH2CH2SiX2R′ using alkali salt, amine or HCl elimination. (CO)4MnPMe2Ch2CH2SiCl2 is also obtained by cleavage of Mn2(CO)10 with Me2PCH2CH2SiCl3. IN the case of HMn (CO)5 the intermediates (CO)4Mn (H) L [L = Me2PSiMe3, Me2PCH2CH2SiMe2 (NMe2), Me2PCH2CH2SiCl2 (NMe2] can be isolated. The new compounds were identified by analytical and spectroscopic (IR, PMR, MS) methods.  相似文献   

15.
The interaction of (Ph3P)2PtO2 (I) with the dicarboxylic acids HO2C(CH2)nCO2H (n = 1–3), phthalic acid and maleic acid gives the dicarboxylato complexes (Ph3P)2PtO(O)C(CH2)nC(O)O (II) (n = 1–3), (Ph3P)2PtO(O)CC6H4C(O)O (III) and cis-[(Ph3P)2Pt(O(O)CCHCHC(O)OH)2] (IV) in nearly quantitative yield. Thermal and photoinduced decarboxylation of III and IV yields the platina heterocycles (Ph3P)2PtC6H4C(O)O (V) and (Ph3P)2PtCHCHC(O)O (VI) with a carbon-platinum σ-bond. Complex VI has been characterized by an X-ray crystal structure determination.  相似文献   

16.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

17.
Reactions of alloxan (all) with [PtL(PPh3)2] (L′= trans-stilbene, L″ diphenylacetylene) afford the side-bonded ketone complex [Pt(all)(PPh3)2] which may also be obtained from the hydrate of alloxan and [PtL′(Pph3)2]. Similarly diethyl oxomalonate (dio) and [Pt(PPh3)4] afford a side-bonded ketone complex [Pt(dio)(PPh3)2]. Reaction of isatin with [Pt(PPh34] gives trans-[PtH{NCO(o-C6H4)CO}(PPh3)2] and benzoyl cyanide and [PtL′(PPh3)2] give cis-[Pt(CN)(COPh3)2] and trans-[Pt(CN)2(PPh2)2].  相似文献   

18.
Amination of PtII-allene complexes of the type cis[PtCl2(Me2CCCHR)(PPh3)] gives the new four-membered C, N chelate aminoalkenyl complexes [PtC(CMe2)CHRNMe2(PPh3)Cl]. These undergo ready insertion of carbon monoxide into the CPt σ-bond; the resulting acyl complexes are oxidized by hydrogen peroxide to aminoacidato complexes, and the free unsaturated β-aminoacids can be recovered in good yield by ligand displacement.  相似文献   

19.
The extraction of In(III) from 1M (Na,H)(Cl,ClO4) media with 4-acylpyrazol-5-ones (HL) in toluene at 25°C is described by equilibria In 3+ + 3 HL ? InL3 + 3 H+ (log K = 1.48, 1.03, 0.87 with acyl = benzoyl, lauroyl, 2-thenoyl), InCl 2+ + 2 HL ? InClL2 + 2 H+ (log K = 0.26, ?0.45, ?0.35 respectively) and In3+ + m Cl? ? InClm(3-m)+ (log βm available from literature). The extraction from 1M (Na,H)(Cl,NO3) medium is enhanced by addition of aliquat (TOMA+,Cl?) and the following synergic equilibrium takes place : InCl2 + (TOMA+,Cl?) ? (TOMA+, InCl2L2? (log K = 5.49, 5.25, 5.21 respectively). Cl? of (TOMA+,Cl?) is exchanged by NO3? with the equilibrium constant log K = 1.50. If (TOMA+,Cl?) is replaced by tri-n-octylammonium chloride, the synergic effect is largely reduced (log K = 4.17 with acyl = benzoyl). The extraction from chloride solutions containing ClO4? remains unchanged by addition of ammonium salts.  相似文献   

20.
The complexes of type Mo-C6H4CH2PR2)2 (M = Pd, Pt) are readily deprotonated by n-Buli under various conditions yielding μ-C-bis-dilithiated species. The resulting carbanions are attacked by the electrophiles Mel, Me3SiCl and Ph2PCl to form the corresponding disubstituted derivatives. The reaction with AuCl . PPh3 yields heterobimetallic complexes with two different MC σ-bonds. The compounds obtained are analytically and spectroscopically characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号