首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of (Me3SiCH2)4V and (Me3SiCH2)3V·THF with cyclopentadiene have been studied. Me4Si and Cp2V were isolated. A scheme of the reactions was proposed which involves formation of unstable monocyclopentadienyl derivatives of vanadium. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1542–1544, August, 1997.  相似文献   

2.
μ-Oxo-bis(triorganoantimony- and -bismuthsulfonates) (R3MO3Sr′)2O[M  Sb, R  Ph, benzyl, M  Bi, R  Ph; R′  Me, CH2CH2OH, CF3, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] and (Me3SbO3SR′)2O · nH2O (n  2, R′  CF3, Ph, 4-CH3C6H4; n  0, R′  CH3, CH2CH2OH) have been prepared by reaction of (Ph3SbO)2 and Me3Sb(OH)2, respectively, with appropriate sulfonic acids or with (R3MX)2O (R  Ph, benzyl; X  Br) and R′SO3H in the presence of Ag2O. The anhydrous compounds (Me3SbO3SR′)2O are obtained by heating the hydrates. Me3Sb(OH)2 and 2,4-(NO2)2C6H3SO3H react to give the hydroxosulfonate Me3Sb(OH)O3SR′. CH3OH solvolyzes the products. A covalent structure, with pentacoordinated Sb or Bi atoms, unidentate O3SR′ ligands and μ-oxygen in apical, and R in equatorial positions, is inferred from the vibrational data for all nonhydrated sulfonate compounds. A correlation between νas(SbOSb) vibration and SbOSb bond angles in hexaphenyl distiboxans was established, which indicates that the SbOSb bridges are linear in (Ph3SbO3SR′)2O (R′  2,4-(NO2)2C6H3, 2,4,6-(NO2)3C6H2) and bent in the other compounds. Data also indicate that there is a linear BiOBi bridge in (Ph3BiO3SCH2CH2OH)2O. The hydrated compounds have a distinctly different ionic structure one H2O being coordinated apically to each of the pentacoordinated Sb atoms in the cation [(Me2SbOH2)2O]2+. This proposal is verified by the crystal structure determination of (Me3SbO3SPh)2O · 2H2O which revealed an ionic structure: [(Me3SbOH2)2O](O3SPh)2. The angles μ-OSbO(H2O) of 171.7(2) and 171.0(2)° and μ-OSbC(CH3) of 98.3° (mean) reflect the distortion of the trigonal bipyramidal surrounding of the Sb atoms, and the long SbO(H2O) distance of 244.4(5) pm (mean) the rather weak bonding of the water molecules to Sb. The distances S [144.6(6) pm (mean)] and the angles OSO [112.6(4)° (mean)] in the sulfonate anion are essentially identical. Hydrogen bonds exist between the water ligands and O atoms of the anions.  相似文献   

3.
Half-sandwich dibenzyl complexes of scandium have been prepared by stepwise treatment of scandium trichloride with lithium derivatives of silyl-functionalized tetramethylcyclopentadienes (C5Me4H)SiMe2R (R = Me, Ph) and benzyl magnesium chloride. The resulting complexes [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] and [Sc(η5-C5Me4SiMe2Ph)(CH2Ph)2(1,4-dioxane)] show structure related to that of the corresponding bis(trimethylsilylmethyl) compounds [Sc(η5-C5Me4SiMe2R)(CH2SiMe3)2(THF)]. The four-coordinate complexes display η1-coordinated benzyl ligands without significant interaction of the ipso-carbon of the phenyl moiety. Conversion of [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] into the cationic species by treatment with triphenylborane in THF led to the formation of a stable charge separated complex [Sc(η5-C5Me4SiMe3)(CH2Ph)(THF)x][BPh3(CH2Ph)]. Benzyl cation formed using [Ph3C][B(C6F5)4] in toluene resulted in a moderately active syndiospecific styrene polymerization catalyst.  相似文献   

4.
Four novel bridged‐amidines H2L {1,4‐R1[C(=NR2)(NHR2)]2 [R1=C6H4, R2=2,6‐iPr2C6H3 (H2L1); R1=C6H4, R2=2,6‐Me2C6H3 (H2L2); R1=C6H10, R2=2,6‐iPr2C6H3 (H2L3); R1=C6H10, R2=2,6‐Me2C6H3 (H2L4)]} were synthesized in 65%–78% isolated yields by the condensation reaction of dicarboxylic acid with four equimolar amounts of amines in the presence of PPSE at 180°C. Alkane elimination reaction of Ln(CH2SiMe3)3(THF)2 (Ln=Y, Lu) with 0.5 equiv. of amidine in THF at room temperature afforded the corresponding bimetallic rare earth alkyl complexes (THF)(Me3SiCH2)2LnL1Ln(CH2SiMe3)2(THF) [Ln=Y ( 1 ), Lu ( 2 )], (THF)(Me3SiCH2)2LnL2Ln‐ (CH2SiMe3)2(THF) [Ln=Y ( 3 ), Lu ( 4 )], (THF)(Me3SiCH2)2YL3Y(CH2SiMe3)2(THF) ( 5 ), (THF)(Me3SiCH2)2YL4‐ Y(CH2SiMe3)2(THF) ( 6 ) in 72% –80% isolated yields. These neutral complexes showed activity towards L‐lactide polymerization in toluene at 70°C to give high molecular weight (M>104) and narrow molecular weight distribution (Mw/Mn≦1.40) polymers  相似文献   

5.
SmCl3 reacts with Me3SiCH2Li in THF yielding Sm(CH2SiMe3)3(THF)3 ( 1 ). The single crystal X‐ray structural analyses of 1 , Er(CH2SiMe3)3(THF)2 ( 2 ), Yb(CH2SiMe3)3(THF)2 ( 3 ), and Lu(CH2SiMe3)3(THF)2 ( 4 ) show the Sm atom in a fac‐octahedral coordination and the heavier lanthanides Er, Yb, and Lu trigonal bipyramidally coordinated with the three alkyl ligands in equatorial and two THF molecules in axial positions.  相似文献   

6.
Carbon-13 and proton NMR spectra have been determined for organothallium (III) derivatives of the types RTlX2 and R2 TlX (R  (CH3)3CCH2 or (CH3)3SiCH2; X  Cl, Br or O2CCH(CH3)2). The dependence of coupling of 13C and 1H to thallium on the number and nature of R groups is discussed in terms of the Fermi contact mechanism for spinspin coupling.The crystal structure of [(CH3)3SiCH2]2 TlCl has been determined. The compound crystallises in the monoclinic space group P21/n, with a 10.618, b 24.492, c 6.017 Å, β 99.76°. The molecule is dimeric with each four-coordinate thallium atom bonded unequally to two bridging chlorine atoms. The CTlC angle is 168°.  相似文献   

7.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

8.
Structural Characterization of Bis(metallated) Derivatives of 3, 3‐Dimethyl‐1, 5‐bis(trimethylsilyl)‐1, 5‐diaza‐pentane with Lithium and Aluminum and of two Donor‐substituted Digallanes The diaminopropane derivative Me2C[CH2N(H)SiMe3]2 is metallated with n‐butyllithium and lithium tetrahydridoaluminate to obtain Me2C[CH2N(Li)SiMe3]2 and Me2C[CH2N(Li)SiMe3][CH2N(AlH2)SiMe3], respectively. Both compounds exhibit a central eight‐membered ring, Li4N4 or Li2Al2N4. Me2C[CH2N(Li)SiMe3]2 reacts with Ga2Cl4 · 2dioxane under formation of the corresponding tetra(amino)digallane. This is monomeric, in contrast to a dimeric tetraalkoxy‐substituted digallane, Ga4OtBu8. All compounds were characterized by single crystal X‐ray crystallography.  相似文献   

9.
N-Lithiomethanesulfinicacidimide amides of the general composition MeS(NR)NRLi (II) are prepared by addition of methyllithium to sulfur diimides RNSNR (I) (R  t-Bu or SiMe3. The corresponding reaction with Me3SnNSNSnMe3 yields the N-lithio salt (Me3SnNSN)Li (III) and tetramethylstannane; addition compounds are not formed. Methatetical reactions of II with chlorostannanes, Me3SnCl or Me2SnCl2, leads to the formation of the sulfinicacidimideamidostannanes MeS(NR)NRSnMe3 (IV) and MeS(NR)NRSnClMe2 (Va), respectively.  相似文献   

10.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

11.
1,1,3,3-Tetramethylguanidine (TMG) and 2-(trimethylsilyl)-1,1,3,3-tetramethylguanidine (TMSTMG) react with trimethylhalosilanes Me3SiHal in equimolar ratio with ionization of the Sihalogen bond to give the stable guanidinium salts [(Me2N)2CNHSiMe3]Hal (Hal  Cl (1), Br (2)) and [(Me2N)2CN(SiMe3)2]Hal (Hal  Cl (3), Br (4), I (5)), respectively, involving tetracoordinate silicon. No reaction occurs with Me3SiF. The same ionic species are present in CHCl3 or CH3CN solutions (IR, 1H, 29Si NMR), thus establishing for the first time, the formation of an ionic solid derivative of Me3SiCl stable towards dissociation. Reaction with an excess of TMG gives an equilibrium mixture of TMSTMG and TMG · HHal. The bis(silyl)guanidinium salts are less stable towards dissociation than the mono(silyl) derivatives, the stability sequence being Cl < Br < I within the series. The reactions of both types of compound have been investigated. The implications of the present and earlier results for the mechanisms of racemization and nucleophilic substitution at silicon are discussed.  相似文献   

12.
The thermal LiHal elimination of
- and
functional compounds provides a simple synthetic route to four-membered SiC and SiN rings. In attempts to inhibit dimerisation sterically, bulky silylmethyl and silylamino substituents were introduced (I–III). (Me3Si)3CSiF2R reacts with LiNHR′, 1,3- migration of a silyl group from carbon to the nitrogen (I, R′= 2,4,6-Me3C6H2) taking place. Substitution occurs for R′ = SiMe2CMe2, (II, III) only.Dichloro-bis(trimethylsilyl)methane reacts with halogenosilanes and lithium in THF to give bis(trimethylsilyl)-halogenosilaethanes (Me3Si)2CHSi(Hal)RR′; R= Me, R′ = N(SiMe3)2, IV, Hal = F; V, Hal = Cl. However a reductive THF cleavage accompanied by a silyl group migration to the oxygen occurs and 1-halogenosilyl-1- trimethylsilyl-5-trimethylsiloxi-pent-1-ene,(Me3Si)(RR′SiHal)CCH(CH2)3OSiMe3, Are The main products (VII–X) of these reactions. Disubstitution occurs with F3Si-i-Pr (VI). (Me3Si)3CSiFNHSiMe2CMe3 (II) reacts with C4H9Li in a molar ratio 12 to give an 1-aza-2,3-disilacyclobutane (XI), involving substitution, LiF elimination, and nucleophilic migration of a methanide ion of the unsaturated precusor.(Me3Si)2CHSiFMeN (2,4,6-Me3C6H2)SiMe3 cyclizes under comparable conditions in the reaction with MeLi via a methylene group of the mesityl group (XII).  相似文献   

13.
Gas-phase dehalogenation of 1,2-bis[chloro(dimethyl)silyl]-2-trimethylsilylethane with alkali metals gave 1,1,2,2-tetramethyl-3-trimethylsilyl-1,2-disilacyclobutane (3). Its spontaneous ring-opening polymerization at room temperature afforded an amorphous linear polymer with T g = ?8.9°C, M w = 3.47·105–3.85·105, and M w /M n = 2.43—2.86. According to spectroscopic data (IR and 1H, 13C, and 29Si NMR), the backbone of the polymer consists of alternating monomer units joined in the “head-to-tail” ([Me2SiCH(SiMe3)CH2SiMe2SiMe2CH-(SiMe3)CH2SiMe2]) and “head-to-head” ways ([Me2SiCH2CH(SiMe3)SiMe2SiMe2CH-(SiMe3)CH2SiMe2]).  相似文献   

14.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. VIII. Concerning the Different Tendencies of Silylated and Alkylated Phosphanes and Diphosphanes to Form Chromium Carbonyl Complexes The influence of the substituents Me3Si tBu and Me in phosphanes and diphosphanes on the formation of complex compounds with Cr(CO)5THF is investigated. tBu(Me3Si)P? P(SiMe3)2 1 and (tBu)2P? P(SiMe3)2 2, resp., react with Cr(CO)5THF 4 at ?18°C by coordinating Cr(CO)5 to the P(SiMe3)2 group to give tBu(Me3Si)P? PIV(SiMe3), · Cr(CO)5 1 a, tBu(Me3Si)PIV? PIV(SiMe3)2 · Cr(CO)4 1b and (tBu)2P? PIV(SiMe3)2 · Cr(CO)5 2a . In the reaction of 1 with 4 using a molar ratio of 1:2 at first 1 a is formed which reacts on to yield completely 1 b. In a mixture of the dissolved compounds (Me3Si)3P 5, (tBu)3P 6 and (tBu)3P? P(SiMe3)2 2 only 5 and 6 react with Cr(CO)5THF yielding (Me3Si)3P · Cr(CO)5 and (tBu)3P · Cr(CO)5, but 2 does not yet react. In a solution of (Me3Si)3P 5, P2Me4 7 and (Me3Si)2P? PMe2 3 only 5 and 7 react with Cr(CO)5THF (0.25 to 1.5 equivalents with respect to 3) to give (Me3Si)3P · Cr(CO)5, P2Me4 · Cr(CO)5 and P2Me4 · 2Cr(CO)5. The formation of complexes with Cr(CO)5THF of the phosphanes 5 and 6 is clearly favoured as compared to the silylated diphosphanes 2 and 3 (not to P2Me4); the PR2 groups (R = tBu, Me in 2 or 3 ) don't have a strong influence.  相似文献   

15.
Reaction of VOCl3 with 2‐phenoxyethanol in n‐hexane in a 1:1 fashion gives dichlorooxo(2‐phenoxyethanolato)vanadium(V). HCl elimination yields the orange vanadium(V) complex, which is the first structurally characterized dichlorooxovanadium(V) alkoxide. The structure analysis reveals an unexpected tetrahedral coordination around the vanadium atom in the monomeric compound. Alcoholysis and hydrolysis reactions of [VOCl2(OCH2CH2OPh)] are monitored by 51V NMR spectroscopy. Activated with Me3SiCH2MgCl or nBu2Mg the complex catalyses the polymerisation of styrene.  相似文献   

16.
The reaction of VCl3(THF)3 with 1 equiv of the lithium salt of ligand ArNH(Me2SiCH2CH2SiMe2)NHAr or ArNH(SiMe3) (Ar = 2,6‐Me2C6H3) afforded the corresponding V(IV) amide complexes, [1,2‐CH2CH2(Me2SiNAr)2]VCl2 ( 3 ) and (Me3SiNAr)2VCl2 ( 4 ). The activation of 3 and 4 with the alkyl aluminum compound Al2Et3Cl3 or AlEt2Cl produced active ethylene polymerization catalysts exhibiting productivity values among the highest reported for vanadium amide based catalysts. Moreover, syndiotactic specific propylene polymerization was successfully conducted at ?40 °C in the presence of 3 /Al2Et3Cl3 and 4 /Al2Et3Cl3. Syndiotactic polypropylenes with moderate stereoregularity ([rr] = 0.66) and a concentration of regioirregular propylene of 6.9 mol % were obtained. Monomodal molecular weight distributions and polydispersity indices lower than 2 were observed in the polymerization runs carried out in heptane solutions. Thus, ethylene–propylene copolymers with propylene concentrations up to 45 mol % were synthesized and characterized by 13C NMR and thermal analysis. Good alternation and random distribution of the two monomers were actually obtained. Samples with elevated concentrations of propylene were completely amorphous, with a glass‐transition temperature of ?50 °C. The properties and structure of the copolymers produced with amide vanadium catalysts 3 and 4 were similar to those reported for ethylene–propylenes produced with industrial vanadium‐based catalysts, suggesting the presence of the same active catalyst species. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3279–3289, 2006  相似文献   

17.
《Polyhedron》1987,6(7):1599-1601
The complex Re(CSiMe3)(CH2SiMe3)3Cl has been isolated as yellow crystals in low yield from the reaction of ReCl4(THF)2 with Me3SiCH2MgCl and characterised by X-ray crystallography. The molecule has a trigonal bipyramidal geometry with the alkylidyne and chlorine ligands axial.  相似文献   

18.
Spectroscopic Investigations on Substituent Effects in Silylmethylsilanes The silanes Me3?n(Me3SiCH2)nSiH (n = 1–3), (RMe2SiCH2)3SiH (R = n-Bu, n-Pr, Et, PhCH2, Ph) and Me3ElCH2SiMe2H (El = Ge, Sn) were prepared. The frequencies of the Si? H stretching vibration, the 29Si? 1H coupling constants and the 29Si n.m.r. chemical shifts were measured. The ?(SiH) and J(29Si? 1H) values in the silanes Me3?n(Me3SiCH2)nSiH depend on the number of trimethylsilymethyl groups. There is hardly an influence of the substituents R on these values in the silanes (RMe2SiCH2)3SiH. The frequencies of the Si? H stretching vibrations in the silanes Me3ElCH2SiMe2H (El = Si, Ge, Sn) show the order Si?Ge > Sn. The 29Si n.m.r. chemical shifts of the Si(H) signals are approximately equal in the silanes Me3?n(Me3SiCH2)nSiH and (RMe2SiCH2)3SiH.  相似文献   

19.
The preparation and properties are described of trans-[(Ph3P)2(CO)M(RNSNR)] [ClO4] (M  RhI, IrI; R  Me, Et, i-Pr, t-Bu) and of cis- or trans-[L2Pt(RNSNR)X] [ClO4] (X  Cl?, L  Et2S, PhMe2As, PhMe2P, R  Me, t-Bu; X  CH3, L  PhMe2P, R  Me).1H and 13C NMR data show the existence of various isomers in solution which may interconvert via intra- and inter-molecular exchange processes. A general reaction scheme for the intramolecular exchange processes is discussed.  相似文献   

20.
Synthesis of a Titana-Oxacyclohexane Ring by Controlled Ring Opening of Tetrahydrofurane. Crystal Structures of [Ti(CH2)4O{Me2Si(NBut)2}]2, [TiCl{Me2Si(NBut)2}]33-O)(μ3-Cl), and [Li2(THF)3{Me2Si(NBut)2}] [TiCl3(THF)3] reacts with [(ButNLi)2SiMe2]2 in diethyl ether at –35 °C under redox disproportionation and formation of the yellow titana(IV)-oxacyclohexane complex [Ti(CH2)4O{Me2Si(NBut)2}]2. According to the crystal structure analysis the titanium atoms are linked to form centrosymmetric dimers via the oxygen atoms of the Ti(CH2)4O six-membered rings, which are in chair conformation. Along with the nitrogen atoms of the chelating [Me2Si(NBut)2]2– ligands the titanium atoms obtain a distorted trigonal-bipyramidal surrounding. While [TiCl{Me2Si(NBut)2}]33-O)(μ3-Cl) with a cluster-like structure is obtained as a by-product. According to the crystal structure analysis of [Li2(THF)3 · {Me2Si(NBut)2}], which is involved in the synthesis reaction, the two lithium atoms are connected with both the nitrogen atoms of the t-butyl amide groups and bridged via an oxygen atom of one of the THF molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号