共查询到20条相似文献,搜索用时 31 毫秒
1.
非参数回归函数的基于截尾数据的估计 总被引:3,自引:1,他引:3
本文考虑截尾数据情况下非参数回归函数m(x)=E(Y|x)的估计。具体地讲,我们面对的是这样的数学模型:T是与(X,Y)独立的随机变量,我们观测到的不是Y本身,而是Z=min(Y,T)及δ=[Y≤T]。今有训练样本{(X_i,Z_i,δ_i)}_(i-1)及当前样本(X,z,δ),记ξ_i(·)=[z_i≥·], N~ (·)=sum from i=1 to n ξ_i(·), V_n(·)=multiply from i=1 to n{1 N~ (z_i)/2 N~ (z_i)}~[δ_i=_i<0], U_n(·)=sum from i=1 to n Wnt(x)ξ_i(·), 令 m_n(x)=integral from 0 to u_n U_n(y)|V_n(y)dy, 其中u_n=F_2~(-1)(n~(-a)),0<α<1/2为一实常数,F_2(·)=P(Y≥·)为Y的(右侧)分布函数。在权函数{W_(ni)(x)}_(i=1)~n及(X,Y,T)的分布函数满足一组条件下,我们证明了m_n(x)为m(x)的强相合估计,即:m_n(x)→m(x),a.s.(n→ ∞). 相似文献
2.
3.
随着新一代测序技术的广泛使用,单细胞RNA数据逐渐成为研究的主流对象. 然而,直接从生物体上获取单细胞~RNA~数据往往需要付出不小的成本.如何简单快捷地获取这些数据便是一个重要的问题. 为了满足对比实验的需要,单细胞~RNA~数据的模拟方法通常除了模拟数据的统计量和原始数据接近以外,还需要在模拟数据中能够保留原数据的基因和细胞样本.在这里我们介绍了一种基于数据的模拟方法,在保留原数据的基因和细胞样本的基础上, 不但可以低成本地模拟单细胞RNA数据,同时保证模拟结果和原数据在大部分特征上相似. 通过大量数值实验证明,本文介绍的方法在基因表达的离散程度、0~表达比例、表达异常值等方面都优于其他模拟方法, 而且和实际数据更加接近. 相似文献
4.
考虑非参数回归模型:Yi=M(Xi)+ei,其中M(x)为B(?R)上的未知实函数,(Xi,Yi)为来自(X,Y)的m(n)相依样本,残差(ei)具有公共的未知密度f(x).本文基于残差估计给出了f(x)的一种非参估计,并证明该估计具有逐点相合性,一致相合性及L1相合性. 相似文献
5.
本文研究了基于相依函数型数据非参数回归函数的核估计.利用稳健的方法,在一定条件下获得了与i.i.d.场合下类似的估计量的几乎完全收敛速度,推广了现有文献中的相关结论. 相似文献
6.
设(X,Y),(X_1,Y_1,),…,(X_n,Y_n)是一个平稳、φ—混合过程((X,Y)∈R~d×R,E|Y|~(s δ)<∞,s≥2,δ>0),用m(x)记E{Y|X=x},本文讨论了m(x)的如下估计m_n(x)的强收敛速度: 相似文献
7.
本文针对双边删失数据讨论了生存函数的非参数Bayes估计问题,运用Fred-holm积分的一些经典结果,文中证明了该估计弱收敛的一个Gaussian过程。 相似文献
8.
生存数据经过未知的单调变换后等于协变量的线性函数加上随机误差, 随机误差的分布函数已知或是带未知参数的已知函数bd 本文先给出未知单调变换的一个相合估计, 再对删失数据做变换, 在此基础上给出了协变量系数的最小二乘估计, 并讨论它的大样本性质. 相似文献
9.
10.
事件历史记录数据(Event History Data)是随时间观察而得到的,记录特定事件发生时间和发生类型的观测数据.这种数据类型在生物医学等领域的研究中十分常见,它包含了两类非常重要的数据类型,复发事件数据(Recurrent Event Data)和面板计数数据(Panel Count Data).在实际生产过程中,有时会出现上述两种数据类型混杂的情况,文本提出了可加可乘半参数建模的方法来分析这种混杂数据.我们讨论了参数估计的相合性和渐近正态性,以及基准率函数的渐近高斯性质.我们进行了数据模拟,比较了我们提出的方法与naive方法的区别. 相似文献
11.
When the Hurst coefficient of a fBm BtH is greater than 1/2, it is possible to define a stochastic integral with respect to BtH as the pathwise limit of Riemann sums. In this article we consider diffusion equations of the type Xt = x0 + 0T (Xs) dBsH. We then construct a simple-to-use estimator of the diffusion coefficient (x), based on the number of crossings of level x of the process Xt. We then study consistency in probability of this estimator and calculate convergence rates in probability. 相似文献
12.
吴达 《高校应用数学学报(A辑)》2003,18(3):311-317
对于未知分布律的生存发展函数和危险拒绝函数作出了新的非参数估计,建立并证明了两个定理,得出了二次均方差最小化的最佳参数值. 相似文献
13.
14.
15.
16.
The forecasting problem for a stationary and ergodic binary time series {X
n
}
n=0
is to estimate the probability that X
n+1=1 based on the observations X
i
, 0in without prior knowledge of the distribution of the process {X
n
}. It is known that this is not possible if one estimates at all values of n. We present a simple procedure which will attempt to make such a prediction infinitely often at carefully selected stopping times chosen by the algorithm. We show that the proposed procedure is consistent under certain conditions, and we estimate the growth rate of the stopping times. 相似文献
17.
The derivation of a new class of nonparametric probability density estimators, maximum entropy histogram estimators (MEHE) is presented. Some of their asymptotic properties are summaried. 相似文献
18.
Madhuja Mallick Nalini Ravishanker 《Methodology and Computing in Applied Probability》2006,8(4):541-558
In this article, we describe an additive stable frailty model for multivariate times to events data using a flexible baseline
hazard, and assuming that the frailty component for each individual is described by additive functions of independent positive
stable random variables with possibly different stability indices. Dependence properties of this frailty model are investigated.
To carry out inference, the likelihood function is derived by replacing high-dimensional integration by Monte Carlo simulation.
Markov chain Monte Carlo algorithms enable estimation and model checking in the Bayesian framework.
相似文献
19.
本文提出非参数核密度估计-ML方法来估计Copula函数中的未知参数;再由统计检验推断得到能较好描述金融资产之间非线性相关结构的Copula。实证分析表明:可以利用Clayton Copula、Gumbel Copula来描述A股市场上证指数与深证成指之间的非线性相关结构. 相似文献
20.
WenBin Lu 《中国科学A辑(英文版)》2009,52(6):1169-1180
Recurrent event time data are common in biomedical follow-up studies, in which a study subject may experience repeated occurrences
of an event of interest. In this paper, we evaluate two popular nonparametric tests for recurrent event time data in terms
of their relative efficiency. One is the log-rank test for classical survival data and the other a more recently developed
nonparametric test based on comparing mean recurrent rates. We show analytically that, somewhat surprisingly, the log-rank
test that only makes use of time to the first occurrence could be more efficient than the test for mean occurrence rates that
makes use of all available recurrence times, provided that subject-to-subject variation of recurrence times is large. Explicit
formula are derived for asymptotic relative efficiencies under the frailty model. The findings are demonstrated via extensive
simulations.
This work was supported by US National Science Foundation (Grant No. DMS-0504269) 相似文献