首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
In this article, we use a unified approach to prove several classes of planar graphs are DP-3-colorable, which extend the corresponding results on 3-choosability.  相似文献   

2.
The trivial lower bound for the 2-distance chromatic number χ 2(G) of any graph G with maximum degree Δ is Δ+1. It is known that χ 2 = Δ+1 if the girth g of G is at least 7 and Δ is large enough. There are graphs with arbitrarily large Δ and g ≤ 6 having χ 2(G) ≥ Δ+2. We prove the 2-distance 4-colorability of planar subcubic graphs with g ≥ 23, which strengthens a similar result by O. V. Borodin, A. O. Ivanova, and T. K. Neustroeva (2004) and Z. Dvořák, R. Škrekovski, and M. Tancer (2008) for g ≥ 24.  相似文献   

3.
Every planar graph is known to be acyclically 5-colorable (O.V.Borodin, 1976). Some sufficient conditions are also obtained for a planar graph to be acyclically 4- and 3-colorable. In particular, the acyclic 4-colorability was proved for the following planar graphs: without 3- and 4-cycles (O.V.Borodin, A.V. Kostochka, and D.R.Woodall, 1999), without 4-, 5-, and 6-cycles, or without 4-, 5-, and 7-cycles, or without 4-, 5-, and intersecting 3-cycles (M. Montassier, A.Raspaud andW.Wang, 2006), and without 4-, 5-, and 8-cycles (M. Chen and A.Raspaud, 2009). The purpose of this paper is to prove that each planar graph without 4- and 5-cycles is acyclically 4-colorable.  相似文献   

4.
《Discrete Mathematics》2022,345(1):112631
For a graph G=(V,E), a total ordering L on V, and a vertex vV, let Wcol2[G,L,v] be the set of vertices wV for which there is a path from v to w whose length is 0, 1 or 2 and whose L-least vertex is w. The weak 2-coloring number wcol2(G) of G is the least k such that there is a total ordering L on V with |Wcol2[G,L,v]|k for all vertices vV. We improve the known upper bound on the weak 2-coloring number of planar graphs from 28 to 23. As the weak 2-coloring number is the best known upper bound on the star list chromatic number of planar graphs, this bound is also improved.  相似文献   

5.
设d_1,d_2,···,d_k是k个非负整数,若图G=(V,E)的顶点集V能被剖分成k个子集V_1,V_2,···,V_k,使得对任意的i=1,···,k,V_i的点导出子图G[Vi]的最大度至多为di,则称图G是(d_1,d_2,···,d_k)-可染的,本文证明了既不含4-圈又不含5-圈的平面图是(9,9)-可染的.  相似文献   

6.
An oriented k-coloring of an oriented graph H is defined to be an oriented homomorphism of H into a k-vertex tournament. It is proved that every orientation of a graph with girth at least 5 and maximum average degree over all subgraphs less than 12/5 has an oriented 5-coloring. As a consequence, each orientation of a plane or projective plane graph with girth at least 12 has an oriented 5-coloring.  相似文献   

7.
8.
We give anO(|V(G)|)-time algorithm to assign vertical and horizontal segments to the vertices of any bipartite plane graphG so that (i) no two segments have an interior point in common, and (ii) two segments touch each other if and only if the corresponding vertices are adjacent. As a corollary, we obtain a strengthening of the following theorem of Ringel and Petrovič. The edges of any maximal bipartite plane graphG with outer facebwb′w′ can be colored by two colors such that the color classes form spanning trees ofG−b andG−b′, respectively. Furthermore, such a coloring can be found in linear time. Our method is based on a new linear-time algorithm for constructing bipolar orientations of 2-connected plane graphs. The research of H. de Fraysseix and P. O. de Mendez was supported by ESPRIT Basic Research Action No. 7141 (ALCOM II). J. Pach's research was supported by NSF Grant CCR-91-22103, OTKA-4269, and ALCOM II.  相似文献   

9.
10.
The linear arboricity la(G) of a graph G is the minimum number of linear forests that partition the edges of G. Akiyama, Exoo, and Harary conjectured that for any simple graph G with maximum degree Δ. The conjecture has been proved to be true for graphs having Δ = 1, 2, 3, 4, 5, 6, 8, 10. Combining these results, we prove in the article that the conjecture is true for planar graphs having Δ(G) ≠ 7. Several related results assuming some conditions on the girth are obtained as well. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 129–134, 1999  相似文献   

11.
In this paper we discuss the problem of finding edge-disjoint paths in a planar, undirected graph such that each path connects two specified vertices on the boundary of the graph. We will focus on the “classical” case where an instance additionally fulfills the so-calledevenness-condition. The fastest algorithm for this problem known from the literature requiresO (n 5/3(loglogn)1/3) time, wheren denotes the number of vertices. In this paper now, we introduce a new approach to this problem, which results in anO(n) algorithm. The proof of correctness immediately yields an alternative proof of the Theorem of Okamura and Seymour, which states a necessary and sufficient condition for solvability.  相似文献   

12.
Some sufficient conditions (in terms of the girth and maximum degree) are given for the list 2-distance chromatic number of a planar graph with maximum degree Δ to be equal to Δ + 1.  相似文献   

13.
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of 468575. This improves on the previous best (trivial) ratio of 45.  相似文献   

14.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree Δ has(1)lc(G) ≤Δ 21 if Δ≥ 9; (2)lc(G) ≤「Δ/2」 + 7 ifg ≥ 5; (3) lc(G) ≤「Δ/2」 + 2 ifg ≥ 7 and Δ≥ 7.  相似文献   

15.
16.
17.
18.
It is proved that the vertices of a cubic bipartite plane graph can be colored with four colors such that each face meets all four colors. This is tight, since any such graph contains at least six faces of size four.  相似文献   

19.
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of roughly 0.842 and runs in O(n3m) time, where n (respectively, m) is the number of vertices (respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time approximation algorithm was .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号