首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To mimic the phosphate ester hydrolysis behavior of purple acid phosphatases the heterobimetallic complex [(BNPP)FeIIIL(μ-BNPP)NiII(H2O)](ClO4) (1) has been synthesized from the precursor complexes [FeIII(LH2)(H2O)2](ClO4)3·3H2O and [FeIII(LH2)(H2O)Cl](ClO4)2·2H2O. In these compounds, L2− is the anion of the tetraiminodiphenol macrocyclic ligand (H2L), while LH2 is the zwitterionic form in which the phenolic protons are shifted to the two metal-uncoordinated imine nitrogens, and BNPP is bis(4-nitrophenyl)phosphate. The X-ray crystal structure of compound 1 has been determined. The structure of 1 comprises of two edge-shared distorted octahedrons whose metal centers are bridged by two equatorial phenolate oxygens and two axially disposed oxygens of a BNPP ligand. The internuclear Fe?Ni distance is 3.083 Å. The high-spin iron(III) and nickel(II) in 1 are antiferromagnetically coupled (J = −7.1 cm−1; H = −2JS1·S2) with S = 3/2 spin ground state. The phosphodiesterase activity of 1 has been studied in 70:30 H2O-(CH3)2SO medium with NaBNPP as the substrate. The reaction rates have been measured by varying pH (3-10), temperature (25-50 °C), and with different concentrations of the substrate and complex at a fixed pH and temperature. Treatment of the rate data, obtained at pH 6.0 and at 35 °C, by the Michaelis-Menten approach have provided the following parameters: KM = 3.6 × 10−4 M, Vmax = 1.83 × 10−7 M s−1, kcat = 9.15 × 10−3 s−1. As compared to the uncatalyzed hydrolysis rate of BNPP, the kcat value is 8.3 × 108 times higher, showing that 1 behaves as an excellent model for phosphate ester hydrolysis.  相似文献   

2.
In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al2O3) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mL H2SO4 + 1.5 mL H2O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)3 with NH3 (by bubbling NH3 into the solution up to a pH ~ 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037% w w−1 CaO, 0.013% w w−1 Fe2O3, 0.012% w w−1 Ga2O3, 0.49% w w−1 Na2O, 0.014% w w−1 SiO2 and 0.013% w w−1 ZnO) presented no statistical differences compared to the certified values at a 95% confidence level.  相似文献   

3.
Cs(FH)2.3F is a liquid salt exhibiting a low viscosity of 20.1 cP and a high conductivity of 86.3 mS cm−1 at 25 °C, in spite of the relatively high melting point (16.9 °C). The high density of 2.82 g cm−3 at the liquid state is due to the heavy atomic weight and small size of cesium atom compared to the organic cations of general ionic liquids. The infrared spectroscopy indicates that this salt contains (FH)2F as a main anionic species. The other anionic species such as (FH)3F found in the cases of other M+(HF)2.3F (M = a univalent organic cation) ionic liquid salts is not detected, suggesting its small abundance as well as the presence of neutral HF in the form of molecular and/or oligomers. The result of 1H NMR also suggests that the anions exchange HF between them. These observations coincide with the experimental result that Cs(FH)2.3F acts as an acid against general ionic liquid fluorohydrogenates such as EMIm(FH)2.3F (EMIm = 1-ethyl-3-methylimidazolium) to lose HF and give Cs(FH)2F precipitate.  相似文献   

4.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

5.
A simple and rapid method for the direct determination of Cd, Cr, Cu, Pb and Zn in soil was developed. The method was developed using three certified reference materials of soil: Eutric Cambisol, Orthic Luvisols and Rendzina, which differed in their matrix composition. Chemical modifiers were essential to achieve reproducible and interference-free signals for the analytes studied. The best results were obtained with a Pd/Mg(NO3)2 admixture for the determination of Cd, Pb and Zn and NH4F for Cu. The combination of W (as a permanent modifier) and Mg(NO3)2 provided well-defined signal profiles for Cr. The following spectral lines were used: Cd 228.8 nm, Cr 520.6 nm, Cu 218.2 nm, Pb 205.3 nm and Zn 307.6 nm. The limit of detection was 4.2 ng g− 1 for Cd, 1.1 μg g− 1 for Cr, 0.5 μg g− 1 for Cu, 1.3 μg g− 1 for Pb and 8.6 μg g− 1 for Zn for the maximum sample mass used. Under optimized conditions, the analyte and matrix were separated effectively in situ, and aqueous standards could be used for calibration.  相似文献   

6.
A novel all-solid-state miniaturized nitrate sensor is developed, characterized and used for flow injection analysis (FIA) of nitrates in various samples. The sensor incorporates silver bis(bathophenanthroline) nitrate [Ag(bath)2NO3] as an electroactive material in a plasticized PVC membrane. The sensing membrane (3 mm × 5 mm) is immobilized on a wafer polyimide microchip (size 13.5 mm × 3.5 mm) to offer a planar miniaturized design easily used in a single channel wall-jet flow injection system. Under hydrodynamic mode of operation (FIA) the sensor displays fast response, high sensitivity, long term stability and good selectivity for NO3 in the presence of many common associated anions. The calibration slope is 55.1 ± 0.1 mV decade−1 over the concentration range 1.0 × 10−1 to 1.0 × 10−6 mol L−1, the lower detection limit is 0.05 μg mL−1, the working pH is 2-9,and the output is 70-90 samples h−1. Validation of the assay method reveals good performance characteristics and suggests application for routine determination of NO3 in industrial wastewaters, fertilizers and pharmaceuticals. The results agree fairly well with data obtained by the standard spectrophotometric methods.  相似文献   

7.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

8.
The synthesis, molecular and supramolecular structure, spectroscopy and electrochemistry of a dialkoxo-bridged diuranyl(VI) compound [(UO2)2(L)2(dimethylformamide)2] (1) derived from the Schiff base ligand H2L, obtained on condensation of 3-methoxysalicylaldehyde with 2-aminoethanol, have been described. The compound has been characterized by IR, UV–Vis, NMR and mass spectra, as well as by single crystal X-ray structure determination. The title compound crystallizes in the monoclinic P21/n space group with the following unit cell parameters a = 10.5713(2) Å, b = 11.9895(2) Å, c = 12.9372(2) Å, β = 102.773(3)° and Z = 2. The structure of 1 reveals that it is a dialkoxo-bridged dinuclear compound of uranium(VI) containing two deprotonated ligands, [L]2−, two dimethylformamide (dmf) molecules and two UO22+ centers. The coordination geometry around the uranium(VI) center is distorted pentagonal bipyramidal; two uranyl oxygens occupy the axial positions, while the basal pentagonal plane is defined by a phenoxo oxygen, two bridging alkoxo oxygens, one imine nitrogen, and one dmf oxygen. Three C–H?O type hydrogen bonds involving one uranyl oxygen, two dmf hydrogens and the imine hydrogen link the dinuclear units into a two-dimensional network. The ESI-MS spectrum of 1 in dimethylsulfoxide exhibits two peaks at m/z = 464.17 and 927.26, which are assignable to [(UO2)2L2H]+ (60%) and [(UO2)2LH]+ (100%) cations, respectively. Cyclic voltammetric measurements of 1 reveal that the uranium(VI) center is reduced quasireversibly at E1/2 = −1112 mV with ΔEP = 97 mV.  相似文献   

9.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

10.
Enthalpies for the two proton ionizations of glycine, N,N-bis(2-hyroxyethyl)glycine (“bicine”) and N-tris(hydroxymethyl)methylglycine (“tricine”) were obtained in water-methanol mixtures with methanol mole fraction (Xm) from 0 to 0.360. With increasing methanol the ionization enthalpy for the first proton (ΔH1) of glycine increased from 4.4 to 9.4 kJ mol−1 with a minimum of 4.1 kJ mol−1 at Xm = 0.059. The ionization enthalpy of the second proton (ΔH2) for glycine decreased from 46.3 to 38.1 kJ mol−1. ΔH1 of bicine increased from 3.5 to 7.6 kJ mol−1 at Xm = 0.273 before dropping to 4.1 kJ mol−1 at Xm = 0.360. ΔH2 of bicine increased from 24.9 to 29.4 kJ mol−1. For tricine, ΔH1 increased from 6.7 to 9.8 kJ mol−1 at Xm = 0.194 then dropped to 7.4 kJ mol−1 at Xm = 0.360. ΔH2 for tricine first dropped from 30.8 to 28.5 kJ mol−1 at Xm = 0.059 before increasing to 33.3 kJ mol−1 at Xm = 0.273. The solvent composition was selected so as to include the region of maximum structure enhancement of water by methanol. The results were interpreted in terms of solvent-solvent and solvent-solute interactions.  相似文献   

11.
The structure, stability, and thermochemistry of the H(MF3)+ isomers (M = N-Bi) have been investigated by MP2 and coupled cluster calculations. All the HF-MF2+ revealed weakly bound ion-dipole complexes between MF2+ and HF. For M = N, As, Sb, and Bi they are more stable than the H-MF3+ covalent structures (free energy differences) by 6.3, 14.3, 32.1, and 73.5 kcal mol−1, respectively. H-PF3+ is instead more stable than HF-PF2+ by 21.8 kcal mol−1. The proton affinities (PAs) of MF3 at the M atom range from 91.9 kcal mol−1 (M = Bi) to 156.5 kcal mol−1 (M = P), and follow the irregular periodic trend BiF3 < SbF3 < AsF3 < NF3 < PF3. The PAs at the F atom range instead from 131.9 kcal mol−1 (M = P) to 164.9 kcal mol−1 (M = Bi), and increase in the more regular order PF3 ≈ NF3 < AsF3 < SbF3 < BiF3. This trend parallels the fluoride-ion affinities of the MF2+ cations. For protonated NF3 and PF3, the calculations are in good agreement with the available experimental results. As for protonated AsF3, they support the formation of HF-AsF2+ rather than the previously proposed H-AsF3+. The calculations indicate also that the still elusive H(SbF3)+ and H(BiF3)+ should be viable species in the gas phase, exothermically obtainable by various protonating agents.  相似文献   

12.
Eight chromium(III) complexes of tetradentate Schiff bases have been prepared in situ by condensing of a substituted salicylaldehyde compound with ethylenediamine. These were characterized by elemental analysis, m.p., IR, molar conductivity, magnetic moment measurements, and electronic spectra. The free ligands were also characterized by 1H and 13C NMR spectra. The 13C NMR spectra are discussed in terms of possible substituent effects. The IR and electronic spectra of the free ligand and the complexes are compared and discussed. The electrospray ionization (ESI) mass spectra of four free ligands and their complexes were measured. The deconvolution of the visible spectra of the complexes, C2v symmetry, in DMSO yields three peaks at ca. 15 600–17 600, 18 400–20 400 and 20 000–23 100, and are assigned to the three d–d transitions, 4B1g → 4Eg(4T2g); 4B1g → 4B2g(4T2g); 4B1g → 4Eg(4T1g), respectively. The complexes showed magnetic moment in the range of 3.5–4.2 BM which corresponds to three unpaired electrons.  相似文献   

13.
Reaction of AlEt3 with 2-methyl-8-quinolinol gave ethylbis(2-methyl-8-quinolinolato)aluminum complex [Al(Et)(q′)2] 1. The complex 1 provided photoluminescent Al complexes by reactions with phenols, carboxylic acid, and H2O. The α-CH2 hydrogens in the Et group of 1 was diastereotropic as revealed by 1H NMR spectroscopy because of the presence of a chiral center at Al. The chirality at Al was dynamically lost at elevated temperature in CDCl2CDCl2 and DMSO-d6, as indicated by temperature dependent 1H NMR spectroscopy. This dynamic or fluxional behavior of 1 is explained by rotation of the 2-methyl-8-quinolinolato ligand. The kinetic parameters of the dynamic process were estimated at ΔH = 135 kJ mol−1 and ΔS = 159 J K−1 mol−1 in CDCl2CDCl2 and at ΔH = 124 kJ mol−1 and ΔS = 151 J K−1 mol−1 in DMSO-d6, respectively, at 350 K. Structures of some of the obtained Al complexes were confirmed by single-crystal X-ray crystallography. These Al complexes showed photoluminescence peaks at 492-507 nm in CHCl3 with quantum yields of 7-23%.  相似文献   

14.
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo.  相似文献   

15.
(Nonafluoro-tert-butyloxy)ethyl tosylate 4 was prepared in 65% yield from nonafluoro-tert-butanol 1 using commercially available reagents. Further reaction of 4 with HNR1R2 (R1 = R2 = H, CH3; R1 = H, R2 = CH3, (CH2)3C8F17, CH2CH2OC(CF3)3) affords the appropriate (CF3)3COCH2CH2NR1R2 amines in 20-69% yields. Improved overall yields of [(CF3)3COCH2CH2]3−nNRn to 1 were obtained by the reaction of (CF3)3CONa 2 and (XCH2CH2)3−nNRn (X = Cl, n = 0, 1, 2, R = CH3; X = CH3SO2O, n = 1, R = CH3SO2) nitrogen mustards and a similar reactive β-substituted ethyl amine. The title amines are mobile colorless liquids and volatile with steam. The bulky fluorous ponytail (CF3)3CO(CH2)2 displays high acidic stability and increases fluorous character almost as much as the classical straight-chain C8F17(CH2)3 ponytail.  相似文献   

16.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

17.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

18.
19.
Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi4Ta2O11, Bi7Ta3O18 and Bi3TaO7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm=445.8+0.005451T−7.489×106/T2 J K−1 mol−1, Cpm=699.0+0.05276T−9.956×106/T2 J K−1 mol−1 and Cpm=251.6+0.06705T−3.237×106/T2 J K−1 mol−1 for Bi3TaO7, Bi4Ta2O11 and for Bi7Ta3O18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S°m(298.15 K)=449.6±2.3 J K−1 mol−1 for Bi4Ta2O11, S°m(298.15 K)=743.0±3.8 J K−1 mol−1 for Bi7Ta3O18 and S°m(298.15 K)=304.3±1.6 J K−1 mol−1 for Bi3TaO7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

20.
The synthesis, characterization and thermal behavior of new monomeric allylpalladium (II) complexes with dichalcogenoamidodiphosphinate anions are reported. The complexes [R = H, R′ = Pri, E = S (1a); R = H, R′ = Pri, E = Se (1b); R = H, R′ = Ph, E = S (1c); R = H, R′ = Ph, E = Se (1d); R = Me, R′ = Pri, E = S (2a); R = Me, R′ = Pri, E = Se (2b); R = Me, R′ = Ph, E = S (2c); R = Me, R′ = Ph, E = Se (2d)] have been prepared by room temperature reaction of [Pd(η3-CH2C(R)CH2)(acac)] (acac = acetylacetonate) with dichalcogenoimidodiphosphinic acids in acetonitrile solution. The complexes have been characterized by multinuclear NMR (1H, 13C{1H}, 31P{1H}, 77Se{1H}), FT-IR and elemental analyses. The crystal structures of complexes 1a, 1d and 2d have been reported and they consist of a six-membered PdE2P2N ring (E = S for 1a and Se for 1d and 2d) and an allyl group, C3H4R(R = H for 1a and 1d and Me for 2d). Thermogravimetric studies have been carried out for few representative complexes. The complexes thermally decompose in argon atmosphere to leave a residue of palladium chalcogenides, which have been characterized by PXRD, SEM and EDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号