首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
采用B3LYP方法在Lanl2DZ水平上计算了六聚同多阴离子(M6On19^-(M=Mo和W,n=2;M=Nb和Ta,n=8)的电子结构,分析了它们的前线轨道、分子静电势(MEP).计算结果表明,Nb6O19^8-和Ta6O19^8-是电子给体,而Nb6O19^2-和Ta6O19^2-则是电子受体,这与它们在溶液中具有不同的化学性质是一致的.  相似文献   

2.
采用密度泛函理论方法探讨了取代Mo原子对[W6-nMonO19]2-,[Nb6-nMonO19]p-和[Ta6-nMonO19]p-体系的M—Ot(M=W,Nb,Ta)键的活化作用.计算结果表明,随着取代Mo原子数的增多,[M6-nMonO19]2-(M=W,Nb,Ta)中M—Ot键的键能逐渐减小,因此Mo原子的引入使M—Ot键活化.在[W6-nMonO19]2-中,Mo—Ot键的键能小于W—Ot键的键能,因此,Mo—Ot键比W—Ot键易断裂,与实验结果一致.而在[Nb6-nMonO19]p-和[Ta6-nMonO19]p-体系中,Mo—Ot键的键能大于M—Ot(M=Nb,Ta)键的键能.Nb和Ta原子的端氧Ot的电荷大于Mo原子的端氧Ot的电荷,初步预测,当[Nb6-nMonO19]p-和[Ta6-nMonO19]p-与有机胺反应时,Nb—Ot和Ta—Ot键优先断裂,易与有机胺的氮原子成键.  相似文献   

3.
王金月  胡常伟  李平  向明礼  肖慎修 《化学学报》2004,62(23):2313-2318
使用密度泛函理论的离散变分方法(DFT-DVM)研究了双帽Keggin型杂多阴离子[PM12O40(VO)2]n-(M=Mo, n=5; M=V, n=9),即[PMo12O40(VO)2]5- (a)和[PV12O40(VO)2]9- (b)的电子结构,讨论了双帽的形成对Keggin型杂多阴离子的电子结构和催化性质的影响,并与其Keggin型杂多阴离子(PM12O40)n-(M=Mo, n=3; M=V, n=15)的计算结果进行了对比分析,计算结果表明,双帽的形成对Keggin型杂多阴离子的电子结构产生了很大的影响,因而它们在催化活性上可能会表现出较大的差异.  相似文献   

4.
运用密度泛函理论(DFT)的BP86方法, 对[M6Om(C25N4H18)n]2-(M=W, Mo; n=1, 2; m=17,18)进行了几何结构优化, 其中Mo系列结构化合物优化的几何结构与实验值吻合较好. 在净电场为零的条件下, 运用DFT/LB94方法计算了体系的二阶非线性光学系数β值: 体系1和2的βvec值分别为154.4×10-30和124.8×10-30 esu. 表明它们具有较大的二阶非线性光学系数, 且Mo系列比W系列的β值大. 而体系3和4的βvec值分别为218.0×10-30和191.8×10-30 esu. 体系3和4的βvec值分别比体系1和2的大, 表明增加给体的数目有利于提高NLO响应, 但都小于它们的2倍.  相似文献   

5.
研究了[{(CO)4_M}_xM′S_4]~(2-)[X=1,2;M=Mo(O),W(O);M′=Mo(Ⅵ),W(Ⅵ)]系列簇合物的共振Raman(RR)光谱及红外(IR)光谱.除了对:v_(c—o),v_(M(Ⅵ)—S(b))[S(b):桥基S],v_(M(Ⅵ)—S(t))[S(t):端基S],v_(M(o)—c),δ_(M(O)—C—O)进行归属外,着重讨论v_(M(O)—S(b)),v_(M(O)-M(Ⅵ))的归属.研究了IR谱中Δv[v_(M(Ⅵ)—S(b))(—v)_(M(O)—S(b))]与M(0)→M(Ⅵ)电荷迁移的关系.RR谱研究结果表明,在[(CO)_(4-)MS_2MoS_2]~(2-),[(CO)_4MoS_2MoS_2Mo(CO)_4]~(2-)中S(b)一M(0)电荷迁移与M(0)-MO(Ⅵ)电荷迁移之间有较明显的相互偶合;在[(CO)_4MS_2WS_2]~(2-)中S(b)→W(Ⅵ)与M(O)→W(Ⅵ)电荷迁移、S(t)→W(Ⅵ)与M(0)→W(Ⅵ)电荷迁移之间也分别存在明显的相互偶合,说明了它们存在强的电子离域.本系列簇合物中二核簇的电子离域程度比三核簇强.  相似文献   

6.
王金月  胡常伟  李平  向明礼  肖慎修 《化学学报》2004,62(23):2313-2318
使用密度泛函理论的离散变分方法(DFT-DVM)研究了双帽Keggin型杂多阴离子[PM12O40(VO)2]n--(M=Mo,n=5; M=V,n=9),即[PMo12O40(VO)2]5- (a)和[PV12O40(VO)2]9- (b)的电子结构,讨论了双帽的形成对Keggin型杂多阴离子的电子结构和催化性质的影响,并与其Keggin型杂多阴离子(PM12O40)n-(M=Mo,n=3; M=V,n=15)的计算结果进行了对比分析,计算结果表明,双帽的形成对Keggin型杂多阴离子的电子结构产生了很大的影响,因而它们在催化活性上可能会表现出较大的差异.  相似文献   

7.
采用密度泛函理论(DFT)的B3LYP方法, 在6-31G**和Lanl2dz水平上分别对(MN)nHm(M=Ga, In; n=1-4; m=1, 2)进行了优化和振动频率计算. 得到了上述团簇的最稳定构型、H原子的结合能以及它们的能隙. 结果表明, (MN)nH(M=Ga, In; n=1-4)的基态构型均为双重态, (MN)nH2(M=Ga, In; n=1-4)的基态构型均为单重态; 当氢的个数为1时, 加在N原子上比加在M(M=Ga, In)原子上稳定, 如有N3单元, 那么加在N3单元两侧的构型是相同的, 且它是最稳定的; 当氢的个数为2时, 除n=1外, 分别加在两个N原子上的构型是最稳定的, 如有N3单元, 那么分别加在N3单元分离最远的两个N原子的构型是最稳定的. GaNH、(GaN)3H 和InNH的结合能和能隙都很大, 说明这些团簇都有很高的稳定性.  相似文献   

8.
簇骼为M6E8P6的六核簇合物的一个新成员--Co6S8(PBun3)6的合成和晶体结构表明,可能是由3个单核基元Co(PBun3)2S先组装成三核簇状基元化合物Co3(μ2-S)3(μ3-S)(PBun3)3,然后由2个这样的三核亚单元形成μ3-S桥生成该六核簇合物.讨论了簇骼为[M6E8P6]n(M=Fe,Mo,Co,Cr,W;E=S,Se,Te;n=-1,0,+1,+2,+3)的系列簇合物的分子内协同效应.  相似文献   

9.
利用密度泛函方法对标题化合物的平衡几何、热化学及振动频率进行了理论预测,发现这3种金属原子都有相似的M(CO)n(n=4~7)结构.全局最低构型对M(CO)7都是单态C3v戴帽八面体7S-1,对M(CO)6都是三重态D3d畸变八面体6T(而对应的单重态M(CO)5仅比它低不到21 kJ·mol-1).对M(CO)n(n=5,4)都是三重态6S-1,其构型分别为从6T中移去1个或2个CO基的衍生物5T和4T.此外,五重态的D3h的三角双锥M(CO)5和单态的Td四面体M(CO)4以及能量更高的含有C和O同时与金属成键的独特配位CO基的M(CO)6和M(CO)3也被发现.最后,给出M(CO)7→M(CO)6+CO反应的离解能.并讨论了金属18价电子的Ti(CO)7存在的可能性.  相似文献   

10.
利用等瓣置换法,通过M*[(R-Cp)M1(CO)3](R=CO2Et,COMe;M*=Na;R=n-Bu;M*=Li)与CpM2FeCo(CO)8(μ3-S)反应,得到六种环戊二烯配体含有较大取代基的含硫四面体手性簇合物(R-Cp)M1CpM2Fe(CO)7(μ3-S)(I-3:M1=W,M2=Mo,R=CO2Et;Ⅱ:M1=W,M2=Mo,R=COMe;Ⅲ:M1=W,M2=Mo,R=n-Bu;Ⅳ-2:M1=Mo,M2=W,R=CO2Et;V:M1=Mo,M2=W,R=COMe;Ⅵ:M1=Mo,M2=W,R=n-Bu).通过元素分析,IR,1H/13C NMR对合成的簇合物结构进行了表征,并讨论了反应途径.  相似文献   

11.
We investigated the structures and bonding of two series of early transition-metal oxide clusters, M(2)O(n)(-) and M(2)O(n) (M = Nb, Ta; n = 5-7) using photoelectron spectroscopy (PES) and density-functional theory (DFT). The stoichiometric M(2)O(5) clusters are found to be closed shell with large HOMO-LUMO gaps, and their electron affinities (EAs) are measured to be 3.33 and 3.71 eV for M = Nb and Ta, respectively; whereas EAs for the oxygen-rich clusters are found to be much higher: 5.35, 5.25, 5.28, and 5.15 eV for Nb(2)O(6), Nb(2)O(7), Ta(2)O(6), and Ta(2)O(7), respectively. Structural searches at the B3LYP level yield triplet and doublet ground states for the oxygen-rich neutral and anionic clusters, respectively. Spin density analyses reveal oxygen radical, diradical, and superoxide characters in the oxygen-rich clusters. The M(2)O(7)(-) and M(2)O(7) clusters, which can be viewed to be formed by M(2)O(5)(-/0) + O(2), are utilized as molecular models to understand dioxygen activation on M(2)O(5)(-) and M(2)O(5) clusters. The O(2) adsorption energies on the stoichiometric M(2)O(5) neutrals are shown to be surprisingly high (1.3-1.9 eV), suggesting strong capabilities to activate O(2) by structural defects in Nb and Ta oxides. The PES data also provides valuable benchmarks for various density functionals (B3LYP, BP86, and PW91) for the Nb and Ta oxides.  相似文献   

12.
The structure and bonding in [M(6)O(19)](n-) isopolyanions of Nb, Ta, Mo, and W have been investigated using density-functional methods. The computational-experimental agreement is good for the geometrical parameters of Mo and W species but less satisfactory for Nb and Ta clusters. The electronic structure of the anions has been probed with molecular-orbital, Mulliken-Mayer, and bonding-energy approaches. The results have indicated that M-O interactions are largely M d-O p in character and that sigma and pi bonds link the metal centers to terminal and bridging (O(b)) oxygen atoms. Some M-O(b) bonds exhibit a [M(4)O(4)] closed-loop structure, but this orbital-interaction mode has not been found to make a particularly outstanding contribution to the bonding stability of the molecules. Mayer indexes correspond to (fractional) multiple, approximately single, and low-order character for terminal, bridging, and internal bonds, respectively, and the valency analysis has yielded similar bonding capacities for the different oxygen atoms. A distribution of the negative charge over all types of oxygen sites and metal charges considerably smaller than the formal oxidation states have been obtained from the Mulliken analysis. Minimal structural changes have been detected on reduction of molybdates and tungstates, in accord with the general properties of the orbitals occupied by the added electrons.  相似文献   

13.
A series of systematic DFT calculations were conducted on Keggin [SiW(9)M(3)O(40)](n-), M = Mo, V, and Nb; and Wells-Dawson anions [P(2)M(18)O(62)],(6-) M = W and Mo; [P(2)M(15)M(3)'O(62)](m-), M = W and Mo, M' = W, Mo, and V to analyze the redox properties and the basicity of the external oxygen sites in polyoxometalates with nonequivalent addenda metals. The energy and composition of the lowest unoccupied orbitals, formally delocalized over the addenda atoms, determine the redox properties of a polyoxometalate. When a Mo(6+) substitutes one W(6+) in the 1:12 tungstate, the energy of the LUMO decreases and the cluster is more easily reduced. The tungstoniobates behave differently because the niobium orbitals insert into the tungsten band and the reduction of [SiW(9)Nb(3)O(40)](7-) yields the blue species SiW(9)Nb(3) 1e and not the cluster SiW(9)Nb(2)Nb(IV). In Wells-Dawson structures, the polar and equatorial sites have different electron affinities and the reduction preferentially occurs in the equatorial sites. Inserting ions with larger electron affinities into the polar sites can modify this traditional conduct. Hence, the trisubstituted [P(2)W(15)V(3)O(62)](9-) anion is reduced in the vanadium polar sites. By means of molecular electrostatic potential maps and the relative energy of the various protonated forms of [SiW(9)V(3)O(40)](7-) and [SiW(9)Mo(3)O(40)](4-), we established the basicity scale: OV(2) > OMo(2) > OW(2) > OV > OW > OMo. Finally, a continuum model for the solvent enabled us to compare anions with different total charges.  相似文献   

14.
Ten 1:1 and 2:1 complexes of [Mn(CO)(3)](+) and [Re(CO)(3)](+) with [Nb(6)O(19)](8)(-) and [Ta(6)O(19)](8)(-) have been isolated as potassium salts in good yields and characterized by elemental analysis, (17)O NMR and infrared spectroscopy, and single-crystal X-ray structure determinations. Crystal data for 1 (t-Re(2)Ta(6)): empirical formula, K(4)Na(2)Re(2)C(6)Ta(6)O(35)H(20), monoclinic, space group, C2/m, a = 17.648(3) A, b = 10.056(1) A, c = 13.171(2) A, beta = 112.531(2) degrees, Z = 2. 2 (t-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(38)H(26), monoclinic, space group, C2/m, a = 17.724(1) A, b = 10.0664(6) A, c = 13.1965(7) A, beta = 112.067(1) degrees, Z = 2. 3 (t-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(37)H(24), monoclinic, space group, C2/m, a = 17.812(2) A, b = 10.098(1) A, c = 13.109(2) A, beta = 112.733(2) degrees, Z = 2. 4 (c-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(50)H(50), triclinic, space group, P1, a = 10.2617(6) A, b = 13.4198(8) A, c = 21.411(1) A, alpha = 72.738(1) degrees, beta = 112.067(1) degrees, gamma = 83.501(1) degrees, Z = 2. 5 (c-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(54)H(58), monoclinic, space group, P2(1)/c, a = 21.687(2) A, b = 10.3085(9) A, c = 26.780(2) A, beta = 108.787(1) degrees, Z = 4. The complexes contain M(CO)(3) groups attached to the surface bridging oxygen atoms of the hexametalate anions to yield structures of nominal C(3)(v)() (1:1), D(3)(d)() (trans 2:1), and C(2)(v)() (cis 2:1) symmetry. The syntheses are carried out in aqueous solution or by aqueous hydrothermal methods, and the complexes have remarkably high thermal, redox, and hydrolytic stabilities. The Re-containing compounds are stable to 400-450 degrees C, at which point CO loss occurs. The Mn compounds lose CO at temperatures above 200 degrees C. Cyclic voltammetry of all complexes in 0.1 M sodium acetate show no redox behavior, except an irreversible oxidation process at approximately 1.0 V vs. Ag/AgCl. In contrast to the parent hexametalate anions that are stable only in alkaline (pH >10) solution, the new complexes are stable, at least kinetically, between pH 4 and pEta approximately 12.  相似文献   

15.
The electronic properties of germanium and tin clusters containing a transition- or lanthanide-metal atom from group 3, 4, or 5, MGe(n) (M = Sc, Ti, V, Y, Zr, Nb, Lu, Hf, and Ta) and MSn(n) (M = Sc, Ti, Y. Zr, and Hf), were investigated by anion photoelectron spectroscopy at 213 nm. In the case of the group 3 elements Sc, Y, and Lu, the threshold energy of electron detachment of MGe(n)(-) exhibits local maxima at n = 10 and 16, while in the case of the group 4 elements Ti, Zr, and Hf, it exhibits a local minimum only at n = 16, associated with the presence of a small bump in the spectrum. A similar behavior is observed for MSn(n)(-) around n = 16, and these electronic characteristics of MGe(n) and MSn(n) are closely related to those of MSi(n). Compared to MSi(n), however, the larger cavity size of a Ge(n) cage allows metal atom encapsulation at a smaller size n. A cooperative effect between the electronic and geometric structures of clusters with a large cavity of Ge(16) or Sn(16) is discussed together with the results of experiments that probe their geometric stability via their reactivity to H(2)O adsorption.  相似文献   

16.
Two polyoxometalate Keggin-type anions, alpha-PM12O40(3-) (M = Mo, W), were transferred to the gas phase by electrospray; their electronic structure and stability were probed by photoelectron spectroscopy. These triply charged anions were found to be highly stable in the gas phase with large adiabatic electron detachment energies of 1.7 and 2.1 eV for M = Mo and W, respectively. The magnitude of the repulsive Coulomb barrier was measured as approximately 3.4 eV for both anions, providing an experimental estimate for the intramolecular Coulomb repulsion present in these highly charged anions. Density functional theory calculations were carried out and compared with the experimental data, providing insight into the electronic structure and valence molecular orbitals of the two Keggin anions. The calculations indicated that the highest occupied molecular orbital and other frontier orbitals for PM12O40(3-) are localized primarily on the mu2-oxo bridging ligands of the polyoxometalate framework, consistent with the reactivity on the mu2-oxo sites observed in solution. It was shown that the HOMO of PW12O40(3-) is stabilized relative to that of PMo12O40(3-) by approximately 0.35 eV. The experimental adiabatic electron detachment energies of PM12O40(3-) (i.e., the electron affinities of PM12O40(2-)) are combined with recent calculations on the proton affinity of PM12O40(3-) to yield O-H bond dissociation energies in PM12O39(OH)2- as approximately 5.1 eV.  相似文献   

17.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

18.
Four salts have been isolated combining the triarylmethane dye cations pararosaniline (PR(+)) and crystal violet (CV(+)) with the hexametalates [M(6)O(19)](2-) (M = Mo, W). A new hexatungstic acid H(2)[W(6)O(19)]·4dma (dma = dimethylacetamide) was isolated and is a useful synthon for hexatungstate salts. Single-crystal X-ray diffraction confirmed the presence of PR(+) and [Mo(6)O(19)](2-) ions in [PR](2)[Mo(6)O(19)]·6dmf (dmf = dimethylformamide). A number of charge-assisted hydrogen bonds N-H···O exist between the cation -NH(2) functions and the anion oxygen atoms. Comparative cyclic voltammetry of salts [A]Cl (A = PR, CV), [Bu(4)N](2)[M(6)O(19)](2-) and A(2)[M(6)O(19)] was established in MeCN and Me(2)SO solutions and of solids in contact with the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [emim][tfsa]. In the molecular solvents, the reversible potential for the process [Mo(6)O(19)](2-/3-) is less negative than the first reduction processes of the dye cations. In contrast, that for [W(6)O(19)](2-/3-) is more negative. Spectro-electrochemistry and bulk electrolysis experiments reveal significantly different pathways in the two cases. In contrast, in the [emim][tfsa] medium, a positive shift in reduction potential of at least 400 mV is seen for the anion processes but relatively little change for the dye cation processes. This means that initial reduction of the anions always precedes that of the dyes, providing significant simplification of the complex voltammetric data. Chemically modified electrodes can be used in the ionic liquid because of slow dissolution kinetics. However, reduced anion salts dissolve rapidly, allowing dissolved phase electrochemistry to be examined. The electrochemistries of the oxidized salts A(2)[M(6)O(19)] are essentially those of the individual ions, although low level interaction of A(+) with reduced anions [M(6)O(19)](3-,4-) is evident. The work establishes protocols for synthesis and handling of intensely absorbing and relatively insoluble salts which can now be applied to systems containing more complex polyoxometalate anions.  相似文献   

19.
Two new three-dimensional oxychlorides are reported, Te(4)M(3)O(15).Cl (M = Nb(5+) or Ta(5+)). The isostructural materials were synthesized by chemical transport reactions utilizing TeO(2), M(2)O(5), and MCl(5) (M = Nb(5+) or Ta(5+)) as reagents. The compounds exhibit a three-dimensional cationic tunnel framework, with Cl(-) anions occupying the tunnels. Crystal data: monoclinic, space group C2/c, a = 18.9944(7) A, b = 7.8314(3) A, c = 21.1658(8) A, beta = 116.6400(10) degrees, Z = 8 (T = 295 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号