首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We demonstrate experimentally the continuous and pulsed loading of a slow and cold atomic beam into a magnetic guide. The slow beam is produced using a vapor loaded laser trap, which ensures two-dimensional magneto-optical trapping, as well as cooling by a moving molasses along the third direction. It provides a continuous flux larger than 109 atoms/s with an adjustable mean velocity ranging from 0.3 to 3 m/s, and with longitudinal and transverse temperatures smaller than 100 μK. Up to 3×108 atoms/s are injected into the magnetic guide and subsequently guided over a distance of 40 cm. Received 19 February 2002 Published online 28 June 2002  相似文献   

2.
刘南春  印建平 《中国物理》2003,12(9):955-963
We propose a new scheme to magnetically guide cold neutral atoms using a U-shaped current carrying conductor. The spatial magnetic field distribution from the U-shaped current-carrying conductor and the relationship between the magnetic field and parameters of the U-shaped conductor are analysed. Our study shows that U-shaped current-carrying conductor can be used to realize single- or double-channel magnetic guiding of cold atoms in weak-field-seeking states and to construct various atom-optical elements. By using Monte Carlo simulations, the dynamic process of the guided atomic-beam splitting in an atomic-beam splitter composed by the U-shaped current-carrying conductor is studied, and some results are presented.  相似文献   

3.
The properties of two-dimensional magnetic traps for laser-cooled atoms are analysed using complex functions. The two components of the magnetic field from a series of parallel, infinitely long, current-carrying wires are represented by a single complex number. The regions of the field where paramagnetic atoms can be trapped occur where the magnetic field is zero. The locations of the zeroes of the field are obtained as the solution to a polynomial and the multiplicity m of the solution determines both the 2(m + 1)-pole nature of the trap and the field gradient through the centre. The zeroes of the field can be merged or split by varying the locations of the currents, their strengths or by applying a uniform magnetic field. The theory is applied to magnetic traps created from long thin wires or permanent magnets on a substrate. The properties of a number of magnetic trap configurations used for atom guides are discussed. Received 28 February 2001 and Received in final form 6 July 2001  相似文献   

4.
5.
An atom faucet   总被引:3,自引:0,他引:3  
We present a simple and efficient source of slow atoms. From a background vapour loaded magneto-optical trap (MOT), a thin laser beam extracts a continuous jet of cold rubidium atoms. The jet that is typical to leaking MOT systems is created without any optical parts placed inside the vacuum chamber. We also present a simple three dimensional numerical simulation of the atomic motion in the presence of these multiple saturating laser fields combined with the inhomogeneous magnetic field of the MOT. At a pressure of P Rb87 = 10-8 mbar and with a moderate laser power of 10 mW per beam, we generate a flux Φ = 1.3×108 atoms/s with a mean velocity of 14 m/s and a divergence of 10 mrad. Received 13 January 2001  相似文献   

6.
Lithographically fabricated circuit patterns can provide magnetic guides and microtraps for cold neutral atoms. By combining several such structures on the same ceramic substrate, we have realized the first ‘atom chips’ that permit complex manipulations of ultracold trapped atoms or de Broglie wave packets. We show how to design magnetic potentials from simple conductor patterns and we describe an efficient trap-loading procedure in detail. Applying the design guide, we describe some new microtrap potentials, including a trap which reaches the Lamb–Dicke regime for rubidium atoms in all three dimensions, and a rotatable Ioffe–Pritchard trap, which we also demonstrate experimentally. Finally, we demonstrate a device allowing independent linear positioning of two atomic clouds which are very tightly confined laterally. This device is well suited for the study of one-dimensional collisions. Received: 27 July 2000 / Revised version: 30 August 2000 / Published online: 22 November 2000  相似文献   

7.
The diffraction of laser-cooled atoms from a spatially-periodic potential is modelled using rigorous coupled-wave analysis. This numerical technique, normally applied to light-diffraction, is adapted for use with atomic de Broglie waves incident on a reflecting diffraction grating. The technique approximates the potential by a large number of constant layers and successively solves the complex eigenvalue problem in each layer, propagating the solution up to the surface of the grating. The method enables the diffraction efficiencies to be calculated for any periodic potential. The results from the numerical model are compared with the thin phase-grating approximation formulae for evanescent light-wave diffraction gratings and idealised magnetic diffraction gratings. The model is applied to the problem of diffracting Rb atoms from a grating made from an array of permanent magnets. Received 13 June 2000 and Received in final form 15 December 2000  相似文献   

8.
An analysis of the phenomenon of coherent population trapping as observed by means of the dark state in the case of optically thick vapors in alkali metal atoms is presented. Very different behaviors are predicted for the observation of the dark state in the fluorescence and transmission spectra of the same atomic sample when the optical length is not negligible. Among other effects, the dark line observed in the fluorescence signal may look inverted appearing as a bright line, while in the transmission signal a narrowing of the line width resonance line is observed for an increase of the atomic density. In the pure three-level scheme a subnatural width is predicted. These effects, related to the electromagnetically induced transparency phenomenon, are readily observed in experiments, which are found to be in excellent agreement with the theory developed. Received 28 March 2001 and Received in final form 3 October 2001  相似文献   

9.
A continuous cold atomic beam from a magneto-optical trap   总被引:3,自引:0,他引:3  
We have developed and characterized a new method to produce a continuous beam of cold atoms from a standard vapour-cell magneto-optical trap (MOT). The experimental apparatus is very simple. Using a single laser beam it is possible to hollow out in the source MOT a direction of unbalanced radiation pressure along which cold atoms can be accelerated out of the trap. The transverse cooling process that takes place during the extraction reduces the beam divergence. The atomic beam is used to load a magneto-optical trap operating in an ultra-high vacuum environment. At a vapour pressure of 10-8mbar in the loading cell, we have produced a continuous flux of 7×107atoms/s at the recapture cell with a mean velocity of 14 m/s. A comparison of this method with a pulsed transfer scheme is presented. Received 19 February 2001  相似文献   

10.
Magnetostatic ferromagnetic coupling in magnetic tunnel junctions was selectively analyzed. We have shown that in samples involving polycrystalline magnetic films, beyond the orange-peel coupling, an important class of interaction is related to the dispersion fields associated to magnetic inhomogeneities. These magnetization fluctuations were described in terms of magnetic roughness arising from the local anisotropy fluctuations. Therefore, using roughness data extracted from atomic/ magnetic force microscopy analysis, the amplitude and the variation with distance of the magnetostatic interactions were selectively quantified. Received 7 December 2001  相似文献   

11.
We show how entangled atomic pairs can be prepared in order to test the Bell inequalities. The scheme is based on the interaction of the atoms with a highly localized field mode within a photonic crystal. The potential of using optically separated transitions and the stability of the entangled state to spontaneous emission could lead to the closure of the communication and the detection loopholes appearing in experiments so far. The robustness of the scheme against detector inefficiencies, the spread in the atomic velocities and the fact that the entangled pairs are not generated simultaneously is also studied. Received 31 July 2001 and Received in final form 30 November 2001  相似文献   

12.
We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors. Received 9 July 2002 / Received in final form 22 October 2002 Published online 27 January 2003 RID="a" ID="a"e-mail: herve.courtois@grenoble.cnrs.fr RID="b" ID="b"associated to Université Joseph Fourier  相似文献   

13.
We demonstrate the guiding of neutral atoms with two parallel microfabricated current-carrying wires on the atom chip and a vertical magnetic bias field. The atoms are guided along a magnetic field minimum parallel to the current-carrying wires and confined in the other two directions. We describe in detail how the precooled atoms are efficiently loaded into the two-wire guide. We present a detailed experimental study of the motional properties of the atoms in the guide and the relationship between the location of the guide and the vertical bias field. This two-wire guide with vertical bias field can be used to realize large area atom interferometer.  相似文献   

14.
Thin quench-condensed films of Rb and K are covered with 1/100 of a mono-layer of Fe or Co. Then the impurities are covered with several atomic layers of the host. The magnetization of the films is measured by means of the anomalous Hall effect (AHE). The magnetization follows a Brillouin function with a magnetic moment of more than 10 Bohr magnetons for bulk Co and Fe impurities. These moments are much larger than the moments of the atomic configurations of Fe and Co and suggest enhanced magnetic moments of the impurities. Received 22 September 2001 and Received in final form 11 December 2001  相似文献   

15.
A single microscopic magnetic trap for neutral atoms using planar current-carrying wires was proposed and studied theoretically by Weinstein et al.In this paper,we propose three structures of composite current-carrying wires to provide 1D,2D and 3D arrays of microscopic magnetic traps for cold alkali atoms.The spatial distributions of magnetic fields generated by these structures are calculated and the field gradient and curvature in each single microtrap are analysed.Our study shows that arrays of microscopic magnetic traps can be used to provide 1D,2D or 3D atomic magnetic lattices,and even to realize 1D,2D and 3D arrays of magneto-optical traps,and so on.  相似文献   

16.
A quantum gravity-gradiometer consists of two spatially separated ensembles of atoms interrogated by pulses of a common laser beam. The laser pulses cause the probability amplitudes of atomic ground-state hyperfine levels to interfere, producing two, motion-sensitive, phase shifts, which allow the measurement of the average acceleration of each ensemble, and, via simple differencing, of the acceleration gradient. Here we propose entangling the quantum states of atoms from the two ensembles prior to the pulse sequence, and show that entanglement encodes their relative acceleration in a single interference phase which can be measured directly, with no need for differencing. Received 6 June 2002 / Received in final form 25 October 2002 Published online 28 January 2003  相似文献   

17.
Miniaturized magnetic guide for neutral atoms   总被引:1,自引:0,他引:1  
We describe the principle and realization of a miniaturized magnetic guide for neutral atoms. The magnetic guide in our experiment is formed by a micrometer-sized current-carrying wire which is attached to a second, thick wire. The conductors are electrically insulated from each other. The combined magnetic field of both conductors provides an approximately linear trapping potential which establishes a magnetic guide along the surface of the thin wire. The miniaturized waveguide is filled with rubidium atoms from a magneto-optical trap (MOT) by first loading the atoms into a spherical magnetic quadrupole trap which is subsequently transformed into the linear potential of the waveguide. As thermal source for Rb atoms we use an alkali metal dispenser which is located close to the center of the MOT. This novel method is compatible with ultrahigh vacuum conditions and we achieved lifetimes of the magnetically trapped atoms up to 100 s. Received: 18 October 1999 / Published online: 24 March 2000  相似文献   

18.
The use of storage cells has become a standard technique for internal gas targets in conjunction with high energy storage rings. In case of spin-polarized hydrogen and deuterium gas targets the interaction of the injected atoms with the walls of the storage cell can lead to depolarization and recombination. Thus the number of wall collisions of the atoms in the target gas is important for modeling the processes of spin relaxation and recombination. It is shown in this article that the diffusion process of rarefied gases in long tubes or storage cells can be described with the help of the one-dimensional diffusion equation. Mathematical methods are presented that allow one to calculate collision age distributions (CAD) and their moments analytically. These methods provide a better understanding of the different aspects of diffusion than Monte Carlo calculations. Additionally it is shown that measurements of the atomic density or polarization of a gas sample taken from the center of the tube allow one to determine the possible range of the corresponding density weighted average values along the tube. The calculations are applied to the storage cell geometry of the HERMES internal polarized hydrogen and deuterium gas target. Received 9 July 2001 and Received in final form 18 September 2001  相似文献   

19.
Fringe shapes in a multiple-beam de Broglie-wave interferometer based on the atomic Kapitza-Dirac effect are studied. An all-optical implementation of such a device is proposed. A realization in the time-domain, using Bose-Einstein condensates released from a trap, seems viable within the present state of the art. Received 5 April 2000 and Received in final form 14 July 2000  相似文献   

20.
In a magneto-optical trap (MOT) we are able to simultaneously trap and cool 7Li and Na. We investigated the loading behavior of the cloud of Li atoms in presence of the overlapped cloud of cold Na atoms, and, by blocking the weak repumping beam for Na, compared it with the loading curve for Li atoms only. Out of these loading curves we calculated the collision cross-section of Na on Li to be 10-11 cm 3 /s. Received 11 January 2002 / Received in final form 5 April 2002 Published online 24 September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号