首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence that many pharmaceutically relevant compounds elicit their effects through binding to multiple targets, so-called polypharmacology, is beginning to change conventional drug discovery and design strategies. In light of this paradigm shift, we have mined publicly available compound and bioactivity data for promiscuous chemotypes. For this purpose, a hierarchy of active compounds, atomic property based scaffolds, and unique molecular topologies were generated, and activity annotations were analyzed using this framework. Starting from ~35?000 compounds active against human targets with at least 1 μM potency, 33 chemotypes with distinct topology were identified that represented molecules active against at least 3 different target families. Network representations were utilized to study scaffold-target family relationships and activity profiles of scaffolds corresponding to promiscuous chemotypes. A subset of promiscuous chemotypes displayed a significant enrichment in drugs over bioactive compounds. A total of 190 drugs were identified that had on average only 2 known target annotations but belonged to the 7 most promiscuous chemotypes that were active against 8-15 target families. These drugs should be attractive candidates for polypharmacological profiling.  相似文献   

2.
Gaining insight into the pharmacology of ligand engagement with G-protein coupled receptors (GPCRs) under biologically relevant conditions is vital to both drug discovery and basic research. NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) monitoring competitive binding between fluorescent tracers and unmodified test compounds has emerged as a robust and sensitive method to quantify ligand engagement with specific GPCRs genetically fused to NanoLuc luciferase or the luminogenic HiBiT peptide. However, development of fluorescent tracers is often challenging and remains the principal bottleneck for this approach. One way to alleviate the burden of developing a specific tracer for each receptor is using promiscuous tracers, which is made possible by the intrinsic specificity of BRET. Here, we devised an integrated tracer discovery workflow that couples machine learning-guided in silico screening for scaffolds displaying promiscuous binding to GPCRs with a blend of synthetic strategies to rapidly generate multiple tracer candidates. Subsequently, these candidates were evaluated for binding in a NanoBRET ligand-engagement screen across a library of HiBiT-tagged GPCRs. Employing this workflow, we generated several promiscuous fluorescent tracers that can effectively engage multiple GPCRs, demonstrating the efficiency of this approach. We believe that this workflow has the potential to accelerate discovery of NanoBRET fluorescent tracers for GPCRs and other target classes.  相似文献   

3.
We present the development and application of a computational molecular de novo design method for obtaining bioactive compounds with desired on‐ and off‐target binding. The approach translates the nature‐inspired concept of ant colony optimization to combinatorial building block selection. By relying on publicly available structure–activity data, we developed a predictive quantitative polypharmacology model for 640 human drug targets. By taking reductive amination as an example of a privileged reaction, we obtained novel subtype‐selective and multitarget‐modulating dopamine D4 antagonists, as well as ligands selective for the sigma‐1 receptor with accurately predicted affinities. The nanomolar potencies of the hits obtained, their high ligand efficiencies, and an overall success rate of 90 % demonstrate that this ligand‐based computer‐aided molecular design method may guide target‐focused combinatorial chemistry.  相似文献   

4.
Ligand promiscuity, which is now recognized as an extremely common phenomenon, is a major underlying cause of drug toxicity. We have developed a new reverse virtual screening (VS) method called ReverseScreen3D, which can be used to predict the potential protein targets of a query compound of interest. The method uses a 2D fingerprint-based method to select a ligand template from each unique binding site of each protein within a target database. The target database contains only the structurally determined bioactive conformations of known ligands. The 2D comparison is followed by a 3D structural comparison to the selected query ligand using a geometric matching method, in order to prioritize each target binding site in the database. We have evaluated the performance of the ReverseScreen2D and 3D methods using a diverse set of small molecule protein inhibitors known to have multiple targets, and have shown that they are able to provide a highly significant enrichment of true targets in the database. Furthermore, we have shown that the 3D structural comparison improves early enrichment when compared with the 2D method alone, and that the 3D method performs well even in the absence of 2D similarity to the template ligands. By carrying out further experimental screening on the prioritized list of targets, it may be possible to determine the potential targets of a new compound or determine the off-targets of an existing drug. The ReverseScreen3D method has been incorporated into a Web server, which is freely available at http://www.modelling.leeds.ac.uk/ReverseScreen3D .  相似文献   

5.
Molecular target identification is of central importance to drug discovery. Here, we developed a computational approach, named bioactivity profile similarity search (BASS), for associating targets to small molecules by using the known target annotations of related compounds from public databases. To evaluate BASS, a bioactivity profile database was constructed using 4296 compounds that were commonly tested in the US National Cancer Institute 60 human tumor cell line anticancer drug screen (NCI-60). Each compound was used as a query to search against the entire bioactivity profile database, and reference compounds with similar bioactivity profiles above a threshold of 0.75 were considered as neighbor compounds of the query. Potential targets were subsequently linked to the identified neighbor compounds by using the known targets of the query compound. About 45% of the predicted compound-target associations were successfully verified retrospectively, suggesting the possible application of BASS in identifying the targets of uncharacterized compounds and thus providing insight into the study of promiscuity and polypharmacology. Furthermore, BASS identified a significant fraction of structurally diverse compounds with similar bioactivities, indicating its feasibility of "scaffold hopping" in searching novel molecules against the target of interest.  相似文献   

6.
When targeting G-protein coupled receptors (GPCRs) in early stage drug discovery, or for novel targets, the type of ligand most likely to produce the desired therapeutic effect may be unknown. Therefore, it can be desirable to identify potential lead compounds from multiple categories: agonists, antagonists, and allosteric modulators. In this study, we developed a triple addition calcium flux assay using FLIPR Tetra to identify multiple ligand classes for the metabotropic glutamate receptor 3 (mGlu3), using a cell line stably co-expressing the human G-protein-coupled mGlu3 receptor, a promiscuous G-protein (G(α16)), and rat Glast, a glutamate transporter. Compounds were added to the cells followed by stimulation with EC(10) and then EC(80) concentration of glutamate, the physiological agonist for mGlu receptors. This format produced a robust assay, facilitating the identification of agonists, positive allosteric modulators and antagonists/negative allosteric modulators. Follow up experiments were conducted to exclude false positives. Using this approach, we screened a library of approximately 800,000 compounds using FLIPR Tetra and identified viable leads for all three ligand classes. Further characterization revealed the selectivity of individual ligands.  相似文献   

7.
Polypharmacology has emerged as a new theme in drug discovery. In this paper, we studied polypharmacology using a ligand-based target fishing (LBTF) protocol. To implement the protocol, we first generated a chemogenomic database that links individual protein targets with a specified set of drugs or target representatives. Target profiles were then generated for a given query molecule by computing maximal shape/chemistry overlap between the query molecule and the drug sets assigned to each protein target. The overlap was computed using the program ROCS (Rapid Overlay of Chemical Structures). We validated this approach using the Directory of Useful Decoys (DUD). DUD contains 2950 active compounds, each with 36 property-matched decoys, against 40 protein targets. We chose a set of known drugs to represent each DUD target, and we carried out ligand-based virtual screens using data sets of DUD actives seeded into DUD decoys for each target. We computed Receiver Operator Characteristic (ROC) curves and associated area under the curve (AUC) values. For the majority of targets studied, the AUC values were significantly better than for the case of a random selection of compounds. In a second test, the method successfully identified off-targets for drugs such as rimantadine, propranolol, and domperidone that were consistent with those identified by recent experiments. The results from our ROCS-based target fishing approach are promising and have potential application in drug repurposing for single and multiple targets, identifying targets for orphan compounds, and adverse effect prediction.  相似文献   

8.
The similarity of drug targets is typically measured using sequence or structural information. Here, we consider chemo-centric approaches that measure target similarity on the basis of their ligands, asking how chemoinformatics similarities differ from those derived bioinformatically, how stable the ligand networks are to changes in chemoinformatics metrics, and which network is the most reliable for prediction of pharmacology. We calculated the similarities between hundreds of drug targets and their ligands and mapped the relationship between them in a formal network. Bioinformatics networks were based on the BLAST similarity between sequences, while chemoinformatics networks were based on the ligand-set similarities calculated with either the Similarity Ensemble Approach (SEA) or a method derived from Bayesian statistics. By multiple criteria, bioinformatics and chemoinformatics networks differed substantially, and only occasionally did a high sequence similarity correspond to a high ligand-set similarity. In contrast, the chemoinformatics networks were stable to the method used to calculate the ligand-set similarities and to the chemical representation of the ligands. Also, the chemoinformatics networks were more natural and more organized, by network theory, than their bioinformatics counterparts: ligand-based networks were found to be small-world and broad-scale.  相似文献   

9.
Modeling off-target effects is one major goal of chemical biology, particularly in its applications to drug discovery. Here, we describe a new approach that allows the extraction of structure-activity relationships from large chemogenomic spaces starting from a single chemical structure. Several public source databases, offering a vast amount of data on structure and activity for a large number of different targets, have been investigated for their usefulness in automated structure-activity relationships (SAR) extraction. SAR tables were constructed by assembling similar structures around each query structure that have an activity record for a particular target. Quantitative series enrichment analysis (QSEA) was applied to these SAR tables to identify trends and to transform these trends into topomer CoMFA models. Overall more than 1700 SAR tables with topomer CoMFA models have been obtained from the ChEMBL, PubChem, and ChemBank databases. These models were able to highlight the structural trends associated with various off-target effects of marketed drugs, including cases where other structural similarity metrics would not have detected an off-target effect. These results indicate the usefulness of the QSEA approach, particularly whenever applicable with public databases, in providing a new means, beyond a simple similarity between ligand structures, to capture SAR trends and thereby contribute to success in drug discovery.  相似文献   

10.
De novo drug discovery is still a challenge in the search for potent and selective modulators of therapeutically relevant target proteins. Here, we disclose the unexpected discovery of a peptidic ligand 1 by X‐ray crystallography, which was auto‐tailored by the therapeutic target MMP‐13 through partial self‐degradation and subsequent structure‐based optimization to a highly potent and selective β‐sheet peptidomimetic inhibitor derived from the endogenous tissue inhibitors of metalloproteinases (TIMPs). The incorporation of non‐proteinogenic amino acids in combination with a cyclization strategy proved to be key for the de novo design of TIMP peptidomimetics. The optimized cyclic peptide 4 (ZHAWOC7726) is membrane permeable with an IC50 of 21 nm for MMP‐13 and an attractive selectivity profile with respect to a polypharmacology approach including the anticancer targets MMP‐2 (IC50: 170 nm ) and MMP‐9 (IC50: 140 nm ).  相似文献   

11.
In silico target fishing, whose aim is to identify possible protein targets for a query molecule, is an emerging approach used in drug discovery due its wide variety of applications. This strategy allows the clarification of mechanism of action and biological activities of compounds whose target is still unknown. Moreover, target fishing can be employed for the identification of off targets of drug candidates, thus recognizing and preventing their possible adverse effects. For these reasons, target fishing has increasingly become a key approach for polypharmacology, drug repurposing, and the identification of new drug targets. While experimental target fishing can be lengthy and difficult to implement, due to the plethora of interactions that may occur for a single small-molecule with different protein targets, an in silico approach can be quicker, less expensive, more efficient for specific protein structures, and thus easier to employ. Moreover, the possibility to use it in combination with docking and virtual screening studies, as well as the increasing number of web-based tools that have been recently developed, make target fishing a more appealing method for drug discovery. It is especially worth underlining the increasing implementation of machine learning in this field, both as a main target fishing approach and as a further development of already applied strategies. This review reports on the main in silico target fishing strategies, belonging to both ligand-based and receptor-based approaches, developed and applied in the last years, with a particular attention to the different web tools freely accessible by the scientific community for performing target fishing studies.  相似文献   

12.
We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by comparing 1D NMR spectra of compound mixtures in the presence of a target immobilized on a solid support to a control sample. The method has been validated by the detection of a variety of ligands for protein and nucleic acid targets (K(D) from 60 to 5000 muM). The ligand binding capacity of a protein was undiminished after 2000 different compounds had been applied, indicating the potential to apply the assay for screening typical fragment libraries. TINS can be used in competition mode, allowing rapid characterization of the ligand binding site. TINS may allow screening of targets that are difficult to produce or that are insoluble, such as membrane proteins.  相似文献   

13.
The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.  相似文献   

14.
Determination of the targets of a compound remains an essential aspect in drug discovery. A complete understanding of all binding interactions is critical to recognize in advance both therapeutic effects and undesired consequences. However, the complete polypharmacology of many drugs currently in clinical development is still unknown, especially in the case of G protein‐coupled receptor (GPCR) ligands. In this work we have developed a chemoproteomic platform based on the use of chemical probes to explore the target profile of a compound in biological systems. As proof of concept, this methodology has been applied to selected ligands of the therapeutically relevant serotonin 5‐HT1A and 5‐HT6 receptors, and we have identified and validated some of their off‐targets. This approach could be extended to other drugs of interest to study the targeted proteome in disease‐relevant systems.  相似文献   

15.
Computer-based chemogenomics approaches compare macromolecular drug targets based on their amino acid sequences or derived properties, by similarity of their ligands, or according to ligand-target interaction models. Here we present ARTS (Assay Related Target Similarity) as a quantitative index that estimates target similarity directly from measured affinities of a set of probe compounds. This approach reduces the risk of deducing artificial target relationships from mutually inactive compounds. ARTS implements a scoring scheme that matches intertarget similarity based on dose-response measurements. While all experimentally derived target similarities have a tendency to be data set-dependent, we demonstrate that ARTS depends less on the used data set than the commonly used Pearson correlation or Tanimoto index.  相似文献   

16.
To realize the full potential of combinatorial chemistry-based drug discovery, generic and efficient tools must be developed that apply the strengths of diversity-oriented chemical synthesis to the identification and optimization of lead compounds for disease-associated protein targets. We report an affinity selection-mass spectrometry (AS-MS) method for protein-ligand affinity ranking and the classification of ligands by binding site. The method incorporates the following steps: (1) an affinity selection stage, where protein-binding compounds are selected from pools of ligands in the presence of varying concentrations of a competitor ligand, (2) a first chromatography stage to separate unbound ligands from protein-ligand complexes, and (3) a second chromatography stage to dissociate the ligands from the complexes for identification and quantification by MS. The ability of the competitor ligand to displace a target-bound library member, as measured by MS, reveals the binding site classification and affinity ranking of the mixture components. The technique requires no radiolabel incorporation or direct biochemical assay, no modification or immobilization of the compounds or target protein, and all reaction components, including any buffers or cofactors required for protein stability, are free in solution. We demonstrate the method for several compounds of wide structural variety against representatives of the most important protein classes in contemporary drug discovery, including novel ATP-competitive and allosteric inhibitors of the Akt-1 (PKB) and Zap-70 kinases, and previously undisclosed antagonists of the M(2) muscarinic acetylcholine receptor, a G-protein coupled receptor (GPCR). The theoretical basis of the technique is analyzed mathematically, allowing quantitative estimation of binding affinities and, in the case of allosteric interaction, absolute determination of binding cooperativity. The method is readily applicable to high-throughput screening hit triage, combinatorial library-based affinity optimization, and developing structure-activity relationships among multiple ligands to a given receptor.  相似文献   

17.
Multiple myeloma is an incurable plasma cell neoplastic disease representing about 10–15% of all haematological malignancies diagnosed in developed countries. Proteasome is a key player in multiple myeloma and proteasome inhibitors are the current first-line of treatment. However, these are associated with limited clinical efficacy due to acquired resistance. One of the solutions to overcome this problem is a polypharmacology approach, namely combination therapy and multitargeting drugs. Several polypharmacology avenues are currently being explored. The simultaneous inhibition of EZH2 and Proteasome 20S remains to be investigated, despite the encouraging evidence of therapeutic synergy between the two. Therefore, we sought to bridge this gap by proposing a holistic in silico strategy to find new dual-target inhibitors. First, we assessed the characteristics of both pockets and compared the chemical space of EZH2 and Proteasome 20S inhibitors, to establish the feasibility of dual targeting. This was followed by molecular docking calculations performed on EZH2 and Proteasome 20S inhibitors from ChEMBL 25, from which we derived a predictive model to propose new EZH2 inhibitors among Proteasome 20S compounds, and vice versa, which yielded two dual-inhibitor hits. Complementarily, we built a machine learning QSAR model for each target but realised their application to our data is very limited as each dataset occupies a different region of chemical space. We finally proceeded with molecular dynamics simulations of the two docking hits against the two targets. Overall, we concluded that one of the hit compounds is particularly promising as a dual-inhibitor candidate exhibiting extensive hydrogen bonding with both targets. Furthermore, this work serves as a framework for how to rationally approach a dual-targeting drug discovery project, from the selection of the targets to the prediction of new hit compounds.  相似文献   

18.
Identification of hit compounds against specific target form the starting point for a drug discovery program. A consistent decline of new chemical entities (NCEs) in recent years prompted a challenge to explore newer approaches to discover potential hit compounds that in turn can be converted into leads, and ultimately drug with desired therapeutic efficacy. The vast amount of omics and activity data available in public databases offers an opportunity to identify novel targets and their potential inhibitors. State of the art in silico methods viz., clustering of compounds, virtual screening, molecular docking, MD simulations and MMPBSA calculations were employed in a pipeline to identify potential ‘hits’ against those targets as well whose structures, as of now, could only predict through threading approaches. In the present work, we have started from scratch, amino acid sequence of target and compounds retrieved from PubChem compound database, modeled it in such a way that led to the identification of possible inhibitors of Dam1 complex subunit Ask1 of Candida albicans. We also propose a ligand based binding site determination approach. We have identified potential inhibitors of Ask1 subunit of a Dam1 complex of C. albicans, which is required to prevent precocious spindle elongation in pre-mitotic phases. The proposed scheme may aid to find virtually potential inhibitors of other unique targets against candida.  相似文献   

19.
From a medicinal chemistry point of view, one of the primary goals of high throughput screening (HTS) hit list assessment is the identification of chemotypes with an informative structure-activity relationship (SAR). Such chemotypes may enable optimization of the primary potency, as well as selectivity and phamacokinetic properties. A common way to prioritize them is molecular clustering of the hits. Typical clustering techniques, however, rely on a general notion of chemical similarity or standard rules of scaffold decomposition and are thus insensitive to molecular features that are enriched in biologically active compounds. This hinders SAR analysis, because compounds sharing the same pharmacophore might not end up in the same cluster and thus are not directly compared to each other by the medicinal chemist. Similarly, common chemotypes that are not related to activity may contaminate clusters, distracting from important chemical motifs. We combined molecular similarity and Bayesian models and introduce (I) a robust, activity-aware clustering approach and (II) a feature mapping method for the elucidation of distinct SAR determinants in polypharmacologic compounds. We evaluated the method on 462 dose-response assays from the Pubchem Bioassay repository. Activity-aware clustering grouped compounds sharing molecular cores that were specific for the target or pathway at hand, rather than grouping inactive scaffolds commonly found in compound series. Many of these core structures we also found in literature that discussed SARs of the respective targets. A numerical comparison of cores allowed for identification of the structural prerequisites for polypharmacology, i.e., distinct bioactive regions within a single compound, and pointed toward selectivity-conferring medchem strategies. The method presented here is generally applicable to any type of activity data and may help bridge the gap between hit list assessment and designing a medchem strategy.  相似文献   

20.
Generally, computer-aided drug design is focused on screening of ligand molecules for a single protein target. The screening of several proteins for a ligand is a relatively new application of molecular docking. In the present study, complexes from the Brookhaven Protein Databank were used to investigate a docking approach of protein screening. Automated molecular docking calculations were applied to reproduce 44 protein-aromatic ligand complexes (31 different proteins and 39 different ligand molecules) of the databank. All ligands were docked to all different protein targets in altogether 12090 docking runs. Based on the results of the extensive docking simulations, two relative measures, the molecular interaction fingerprint (MIF) and the molecular affinity fingerprint (MAF), were introduced to describe the selectivity of aromatic ligands to different proteins. MIF and MAF patterns are in agreement with fragment and similarity considerations. Limitations and future extension of our approach are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号