首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cationic Gemini surfactant at the air/water interface   总被引:2,自引:0,他引:2  
The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the alkyl chains reorient from tilting to vertical, forming surface micelles dispersed in the network-like ridges due to the strong interaction among film molecules.  相似文献   

2.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

3.
Summary Ellipsometry has been applied to study the adsorption of sodium dodecylsulfate (NaDS) at the air/solution interface of the surfactant in water and aqueous sodium chloride. Results are expressed by the ellipticitye and the anglea which the major axis of the ellipse forms with the plane of incidence of the light. The ellipticity is found to change its sign at low NaDS concentrations and to pass a maximum somewhat below the cmc. Below the maximum the increment in ellipticity Aee is a linear function of the surface excess concentration dodecylsulfate. The slope e/gd this linear relation is found to decrease when inert electrolyte (NaCl) is added. The azimuth anglea increases slightly with NaDS concentration near and above the cmc. The results are discussed in terms of the Drude theory.
Zusammenfassung Die Adsorption von Natrium Dodecylsulfat (NaDS) an der Oberfläche wäßßriger Lösungen wurde mit Hilfe eines Ellipsometers untersucht. Die Meßergebnisse werden durch die Elliptizität e und den Winkel a zwischen der Hauptachse der Ellipse und der Einfallsebene des Lichtstrahls ausgedrü ckt. Die Elliptizität wechselt ihr Vorzeichen im Bereich geringer Konzentrationen von NaDS und läuft durch ein Maximum etwas unterhalb der cmc des Tensids. Unterhalb des Maximums wird eine lineare Beziehung zwischen dem Inkrement der Elliptizität e und der Oberflächen-Überschußkonzentration von Dodecylsulfat gefunden. Durch Zugabe eines inerten Elektrolyten (NaC1) wird die Steigung e/ stark verringert. Der Azimuth-Winkel a nimmt im Bereich der cmc des Tensids schwach zu. Die Ergebnisse werden im Rahmen der Drude-Theorie diskutiert.
  相似文献   

4.
To investigate the counterion effects, we employed dodecyltrimethylammonium bromide (DTABr)-dodecyltrimethylammonium tetrafluoroborate (DTABF(4)) mixed aqueous solutions and measured their surface tensions, then analyzed these data in a thermodynamic treatment. The tensiometry showed that DTABF(4) was more effective in lowering the surface tension of water. The phase diagram of adsorption demonstrated that the surface was enriched with BF(4)(-) ions, but the composition of Br(-) ions in the adsorbed film was slightly enhanced compared to the ideal mixing criteria. These were explained in terms of the size and polarizability of counterions. Moreover, the distribution of counterions of the DTABr-DTABF(4) mixtures in the adsorbed film is greatly different from that of the 1-hexyl-3-methylimidazolium bromide (HMIMBr)-1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF(4)) mixtures, where a stronger hydrogen-bonding exists between BF(4)(-) and HMIM(+) ions. These findings suggest that the adsorption of counterions in electric double layers is likely subject to two factors: the nature of counterion and their interactions with surfactant ions.  相似文献   

5.
The dynamic surface elasticity, dynamic surface tension, and ellipsometric angles of mixed aqueous poly(diallyldimethylammonium chloride)/sodium dodecylsulfate solutions (PDAC/SDS) have been measured as a function of time and surfactant concentration. This system represents a typical example of polyelectrolyte/surfactant complex formation and subsequent aggregation on the nanoscale. The oscillating barrier and oscillating drop methods sometimes led to different results. The surface viscoelasticity of mixed PDAC/SDS solutions are very close to those of mixed solutions of sodium polystyrenesulfonate and dodecyltrimethylammonium bromide but different from the results for some other polyelectrolyte/surfactant mixtures. The abrupt drop in surface elasticity when the surfactant molar concentration approaches the concentration of charged polyelectrolyte monomers is caused by the formation of microparticles in the adsorption layer. Aggregate formation in the solution bulk does not influence the surface properties significantly, except for a narrow concentration range where the aggregates form macroscopic flocks. The mechanism of the observed relaxation process is controlled by the mass exchange between the surface layer and the flocks attached to the liquid surface.  相似文献   

6.
An organo-soluble, peptide-polymer conjugate that combines poly(n-butyl acrylate) with a beta-sheet-forming peptide is spread at the water surface to investigate peptide-guided self-assembly in a two-dimensional environment. Single layers of the conjugate are studied to gain information on the packing, orientation, and structure of the conjugate molecules using standard monolayer techniques: isotherms, grazing incidence X-ray diffraction (GIXD), and infrared reflection absorption spectroscopy (IRRAS). At all conditions studied, the stabilizing beta-sheet network consists of antiparallel beta-sheets oriented parallel to the air/water interface. The incorporation of temporary switch defects in the peptide segment enables beta-sheet assembly to be triggered at different packing densities. Stable monolayers, with low compressibilities similar to peptide monolayers, form when beta-sheet assembly occurs in monolayers that contain closely packed conjugate molecules. Langmuir-Schaefer transfer of the switched monolayer seeded with 1/1000 part stearic acid results in a transferred monolayer containing ordered domains with 7 nm wide stripes, a width in agreement with the end-to-end distance of the conjugate molecule. In this interfacial system, high packing densities and a hydrophobic seed molecule play an important role in beta-sheet network and structure formation. Both effects likely direct the highly ordered beta-sheet structure because of beta-strand prealignment. Insights gained from self-assembly in this system can be applied to peptide aggregation mechanisms in more complex interfacial environments.  相似文献   

7.
We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC < CSAC . This implies that the chemical potential that the surfactant needs to adsorb is higher than its maximum chemical potential, and hence, the surfactant will not adsorb. One of the main goals of our model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.  相似文献   

8.
Zwitterionic surfactants are formally neutral but with headgroups containing both a positive charge center and a negative charge center separated from each other by a spacer group, with a long hydrophobic tail attached to one of the charge centers, usually but not always the positive charge center. The micellization and adsorption properties of zwitterionic surfactants depend on specifics of the surfactant structure such as the length m of the hydrophobic alkyl chain, the length n of the intercharge spacer and the nature of the headgroup charge centers. Micellization is favored by an increase in the hydrophobic tail length m, but goes through a maximum for interchange spacings of n = 3–4 methylene groups. There are additional effects from the presence of additional hydrophilic substituent groups in the spacer. Specific binding of anions and the cation valence of added electrolyte are factors that also modulate the micellization and adsorption properties of zwitterionic surfactants in the presence of added electrolyte. Anions in particular bind preferentially to zwitterionic micelles independent of the relative order of the charge centers in the headgroup. The anion binding affinities follow a Hofmeister series and impart a net negative charge to the micelles. Micellization is temperature-dependent and exhibits enthalpy-entropy compensation, with entropy dominant at lower temperatures and enthalpy more important at higher temperatures. The judicious manipulation of these factors permits control of the interfacial properties of zwitterionic surfactants, responsible for a wide range of applications in chromatography, electrophoresis, cloud point extraction, solubilization, stabilization of biomolecules and nanomaterials and catalysis.  相似文献   

9.
Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with local-equilibrium theory but shows deviation from the theoretical washout curve, presumably due to slow desorption of solubilized but otherwise water insoluble components. The polymeric nonionic triblock copolymer Pluronic exhibits almost complete irreversible adsorption at the air/water interface over a molecular-weight range from 3 to 14 kDa. Similar irreversible dynamic behavior is observed for adsorption/desorption of the protein bovine serum albumin (BSA) from dilute aqueous solutions at the air/water interface. The new continuous-flow tensiometer (CFT) is a simple, yet powerful, tool to investigate sorption dynamics at fluid/fluid interfaces, especially for larger molecular weight surface-active agents that exhibit significant hindrance to desorption.  相似文献   

10.
Measurements of the advancing contact angles for aqueous solutions of sodium dodecyl sulfate (SDDS) or sodium hexadecyl sulfonate (SHS) in mixtures with methanol, ethanol, or propanol on a quartz surface were carried out. On the basis of the obtained results and Young and Gibbs equations the critical surface tension of quartz wetting, the composition of the surface layer at the quartz-water interface, and the activity coefficients of the anionic surfactants and alcohols in this layer as well as the work of adhesion of aqueous solutions of anionic surfactant and alcohol mixtures to the quartz surface were determined. The analysis of the contact angle data showed that the wettability of quartz changed visibly only in the range of alcohol and anionic surfactant concentration at which these surface-active agents were present in the solution in the monomeric form. The analysis also showed that there was a linear dependence between the adhesion and the surface tension of aqueous solutions of anionic surfactant and alcohol mixtures. This dependence can be described by linear equations for which the constants depend on the anionic surfactant and alcohol concentrations. The slope of all linear dependence between adhesion and surface tension was positive. The critical surface tension of quartz wetting determined from this dependence by extrapolating the adhesion tension to the value equal to the surface tension (for contact angle equal zero) depends on the assumption whether the concentration of anionic surfactant or alcohol was constant. Its average value is equal to 29.95mN/m and it is considerably lower than the quartz surface tension. The positive slope of the adhesion-surface tension curves was explained by the possibility of the presence of liquid vapor film beyond the solution drop which settled on the quartz surface and the adsorption of surface-active agents at the quartz/monolayer water film-water interface. This conclusion was confirmed by the work of adhesion of aqueous solutions of anionic surfactants and short-chain alcohol mixtures to the quartz surface determined on the basis of the contact angle data and molar fraction of anionic surfactants and alcohols and their activity coefficient in the surface layer.  相似文献   

11.
The general theoretical model by Garrett and Joos proposed in 1976 for the estimation of the dilational elasticity of mixed surfactant solutions, and also the theoretical model proposed by Joos for the limiting elasticity of such mixtures, demonstrate quite satisfactory agreement with experimental results obtained from the oscillating bubble shape method for mixtures of a nonionic surfactant and a protein, that is, beta-lactoglobuline and decyl dimethyl phosphine oxide, C10DMPO.  相似文献   

12.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

13.
A diffusion model is proposed to describe the adsorption kinetics of proteins at a liquid interface. The model is based on the simultaneous solution of the Ward-Tordai equation and a set of recently developed equations describing the equilibrium state of the adsorption layer: the adsorption isotherm, the surface layer equation of state, and the function of adsorption distribution over the states with different molar areas. The new kinetics model is compared with dynamic surface tensions of beta-casein solutions measured with the drop/bubble profile and maximum bubble pressure methods. The adsorption process for low concentrations is governed by the diffusion mechanism, while at large protein concentrations this is only the case in the initial stage. The effective diffusion coefficients agree fairly well with literature data. The adsorption values calculated from the dynamic surface tension data agree very well with the used equilibrium adsorption model.  相似文献   

14.
The composition and properties of the adsorption films of dodecylammonium chloride/sodium dodecyl sulfate at the air/water interface depend on interactions between the film molecules and equilibria in the bulk phase (monomer-micelle and/or monomerprecipitate equilibria).The negative value of surface molecular interaction parameter mon calculated using the regular solution theory indicates strong attractive interactions between adsorbed molecules. Electrostatic interactions between oppositely charged ionic head groups enhance the adsorption of surfactants and decrease the minimum molar area of surfactant molecules at the air/water interface. The addition of an oppositely charged surfactant enhances packing at the air/water interface and transition from a liquid expanded to a liquid condensed state. Surface potential measurements reveal positive values for the mixtures investigated, implying the cationic surfactant ions are closer to the surface than the anionic ones.  相似文献   

15.
In a recent review of this topic [B.C. Garett, Science 303 (2004) 1146] the emphasis was on some recent experiments, in which it was found that some anions accumulate at the air/water interface and not in the bulk, as usually happens to the cations, and on some simulations which explained those positive surface adsorption excesses. Because a large number of these experiments could be explained on the basis of some simple physical models proposed by the authors for the interaction between the ions and the air/water interface [M. Manciu, E. Ruckenstein, Adv. Colloid Interface Sci. 105 (2003) 63; Adv. Colloid Interface Sci. 112 (2004) 109; Langmuir 21 (2005) 11312], those models are reviewed in the present note, the goal being to draw attention to them.  相似文献   

16.
17.
The adsorption of trifluoro-, trichloro-, tribromo-, and trimethylacetic acid at the water/air interface is discussed on the basis of surface tension measurements. The process of adsorption is described by Henry's and Langmuir's isotherm equations. The obtained results allow calculation of the standard free energy of adsorption of investigated molecules and the contribution to this energy of hydrophobic groups of these molecules.  相似文献   

18.
Adsorption and desorption dynamics of lysozyme and β-casein at the air/water interface were investigated through stress relaxation experiments. The resulting surface tension changes due to a step-type surface area disturbance, as a function of time, were measured through a capillary wave probe. The adsorption data, obtained after a surface area expansion, can be well fitted to a diffusion-controlled adsorption model. However, desorption relaxation following a surface compression is much slower and cannot be modeled by the diffusion theory. Characteristic diffusion frequency and high-frequency dilational elasticity for protein layers were also obtained and found to be consistent with data reported in the literature.  相似文献   

19.
 To describe diffusion-controlled adsorption, the diffusion equation is solved under different initial and boundary conditions by means of a Laplace transformation. By solving this equation, it has been found that the solution, which Ward and Tordai used, is only applicable for x>0; therefore, it is incorrect if the derivation is made at x = 0. Ward and Tordai did not notice this and the first derivation was made at x = 0 in order to get the dynamic surface adsorption, Γ(t). In this paper, an accurate solution, which is applicable for x≥ 0, is given and the expression for Γ(t) is obtained. Furthermore the relationship between the dynamic surface tension and Γ(t) is derived. As an example, the dynamic surface tensions of an aqueous octyl-β-d-glucopyranosid solution were measured by means of the maximum bubble pressure method. By using the derived theory it has been proved that the controlling mechanism of the adsorption process of this surfactant at the long-time-adsorption limits changes as a function of the bulk concentration; only at dilute concentration is it controlled by diffusion. Received: 26 July 1999/Accepted in revised form: 16 September 1999  相似文献   

20.
Polyelectrolyte/surfactant mixtures at the air–solution interface   总被引:2,自引:0,他引:2  
This review presents some of the recent developments in our understanding of the behaviour of polyelectrolyte/surfactant mixtures at the air–solution interface. The existence of a strong surface polyelectrolyte/surfactant interaction results in a complex pattern of surface adsorption. Recent studies, using a range of surface sensitive techniques, which include ellipsometry, neutron and X-ray reflectivity, surface tension and interfacial rheology, have considerably enhanced the understanding of their surface behaviour, which can be rationalized in terms of the competition between the formation of surface active polymer/surfactant complexes and solution polymer/surfactant micelle complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号