首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 345 毫秒
1.
表面增强拉曼散射(SERS)被用于检测细菌芽孢中的一种重要的标志物吡啶2,6-二羧酸(DPA)。以聚乙烯吡咯烷酮(PVP)为粘合剂,将60 nm的金粒子组装到表面打磨光滑的金电极上,制备稳定、灵敏的SERS基底。通过不同pH值下吸附在金基底上的DPA的SERS特征,考察DPA分子吸附构型发生的变化,并分析酸根离子对其吸附的影响。结果表明:在强酸条件下,DPA在Au NPs/PVP/Au基底上的SERS信号能达到最大增强;当pH值大于DPA二级解离常数时,DPA的SERS特征逐渐减弱。在DPA中引入不同酸根盐时,后者会取代纳米金表面的柠檬酸根所占的部分位点,改变Au NPs-Au基底的SERS增强性能。3种酸根吸附性能不同,所以获得的光谱强度存在差异。  相似文献   

2.
The detection of bacterial spores requires the capability of highly sensitive and biocompatible probes. This report describes the findings of an investigation of surface-enhanced Raman spectroscopic (SERS) detection of Bacillus subtilis spores using gold-nanoparticle (Au NP) based substrates as the spectroscopic probe. The SERS substrates are shown to be highly sensitive for the detection of B. subtilis spores, which release calcium dipicolinate (CaDPA) as a biomarker. The SERS bands of CaDPA released from the spores by extraction using nitric acid provide the diagnostic signal for the detection, exhibiting a limit of detection (LOD) of 1.5×10(9) spores L(-1) (or 2.5×10(-14) M). The LOD for the Au NP based substrates is quite comparable with that reported for Ag nanoparticle based substrates for the detection of spores, though the surface adsorption equilibrium constant is found to be smaller by a factor of 1-2 orders of magnitude than the Ag nanoparticle based substrates. The results have also revealed the viability of SERS detection of CaDPA released from the spores under ambient conditions without extraction using any reagents, showing a significant reduction of the diagnostic peak width for the detection. These findings have demonstrated the viability of Au NP based SERS substrates for direct use with high resolution and sensitivity as a biocompatible probe for the detection of bacterial spores.  相似文献   

3.
表面增强拉曼散射(SERS)被用于检测细菌芽抱中的一种重要的标志物吡啶2,6-羧酸(DPA).以聚乙烯吡啶烷酮(PVP)为粘合剂,将60 nm的金粒子组装到表面打磨光滑的金电极上,制备稳定、灵敏的SERS基底.通过不同pH值下吸附在金基底上的DPA的SERS特征,考察DPA分子吸附构型发生的变化,并分析酸根离子对其吸附...  相似文献   

4.
A rapid detection protocol suitable for use by first-responders to detect anthrax spores using a low-cost, battery-powered, portable Raman spectrometer has been developed. Bacillus subtilis spores, harmless simulants for Bacillus anthracis, were studied using surface-enhanced Raman spectroscopy (SERS) on silver film over nanosphere (AgFON) substrates. Calcium dipicolinate (CaDPA), a biomarker for bacillus spores, was efficiently extracted by sonication in nitric acid and rapidly detected by SERS. AgFON surfaces optimized for 750 nm laser excitation have been fabricated and characterized by UV-vis diffuse reflectance spectroscopy and SERS. The SERS signal from extracted CaDPA was measured over the spore concentration range of 10(-14)-10(-12) M to determine the saturation binding capacity of the AgFON surface and to calculate the adsorption constant (Kspore=1.7 x 10(13) M(-1)). At present, an 11 min procedure is capable of achieving a limit of detection (LOD) of approximately 2.6 x 10(3) spores, below the anthrax infectious dose of 10(4) spores. The data presented herein also demonstrate that the shelf life of prefabricated AgFON substrates can be as long as 40 days prior to use. Finally, these sensing capabilities have been successfully transitioned from a laboratory spectrometer to a field-portable instrument. Using this technology, 10(4) bacillus spores were detected with a 5 s data acquisition period on a 1 month old AgFON substrate. The speed and sensitivity of this SERS sensor indicate that this technology can be used as a viable option for the field analysis of potentially harmful environmental samples.  相似文献   

5.
Bell SE  Mackle JN  Sirimuthu NM 《The Analyst》2005,130(4):545-549
Dipicolinic acid (DPA) is an excellent marker compound for bacterial spores, including those of Bacillus anthracis (anthrax). Surface-enhanced Raman spectroscopy (SERS) potentially has the sensitivity and discrimination needed for trace DPA analysis, but mixing DPA solutions with citrate-reduced silver colloid only yielded measurable SERS spectra at much higher (>80 ppm) concentrations than would be desirable for anthrax detection. Aggregation of the colloid with halide salts eliminated even these small DPA bands but aggregation with Na2SO4(aq) resulted in a remarkable increase in the DPA signals. With sulfate aggregation even 1 ppm solutions gave detectable signals with 10 s accumulation times, which is in the sensitivity range required. Addition of CNS- as an internal standard allowed quantitative DPA analysis, plotting the intensity of the strong DPA 1010 cm(-1) band (normalised to the ca. 2120 cm(-1) CNS- band) against DPA concentration gave a linear calibration (R2 = 0.986) over the range 0-50 ppm DPA. The inclusion of thiocyanate also allows false negatives due to accidental deactivation of the enhancing medium to be detected.  相似文献   

6.
Dipicolinic acid (DPA) assay revisited and appraised for spore detection   总被引:1,自引:0,他引:1  
Hindle AA  Hall EA 《The Analyst》1999,124(11):1599-1604
Delayed gate fluorescence detection of dipicolinic acid (DPA), a universal and specific component of bacterial spores, has been appraised for use in a rapid analytical method for the detection of low concentrations of bacterial spores. DPA was assayed by fluorimetric detection of its chelates with lanthanide metals. The influence of the choice and concentration of lanthanide and buffer ions on the fluorescence assay was studied as well as the effects of pH and temperature. The optimal system quantified the fluorescence of terbium monodipicolinate in a solution of 10 microM terbium chloride buffered with 1 M sodium acetate, pH 5.6 and had a detection limit of 2 nM DPA. This assay allowed the first real-time monitoring of the germination of bacterial spores by continuously quantifying exuded DPA. A detection limit of 10(4) Bacillus subtilis spores ml-1 was reached, representing a substantial improvement over previous rapid tests.  相似文献   

7.
A new method to stabilize and functionalize surfaces for surface-enhanced Raman spectroscopy (SERS) is demonstrated. Atomic layer deposition (ALD) is used to deposit a sub-1-nm alumina layer on silver film-over-nanosphere (AgFON) substrates. The resulting overlayer maintains and stabilizes the SERS activity of the underlying silver while presenting the surface chemistry of the alumina overlayer, a commonly used polar adsorbent in chromatographic separations. The relative affinity of analytes for alumina-modified AgFON substrates can be determined by their polarity. On the basis of SERS measurements, dipicolinic acid displays the strongest binding to the ALD alumina-modified AgFON among a set of pyridine derivatives with varying polarity. This strong affinity for carboxylate groups makes the SERS substrate an ideal candidate for bacillus spores detection using the dipicolinate biomarker. The SERS signal from extracted dipicolinate was measured over the spore concentration range 10(-14)-10(-12) M to determine the saturation binding capacity of the alumina-modified AgFON surface. The adsorption constant was determined to be Kspore = 9.0 x 10(13) M(-1). A 10-s data collection time is capable of achieving a limit of detection of approximately 1.4 x 10(3) spores. The shelf life of prefabricated substrates is at least 9 months prior to use. In comparison to the bare AgFON substrates, the ALD-modified AgFON substrates demonstrate twice the sensitivity with 6 times shorter data acquisition time and 7 times longer temporal stability. ALD expands the palette of available chemical methods to functionalize SERS substrates, which will enable improved and diverse chemical control over the nature of analyte-surface binding for biomedical, homeland security, and environmental applications.  相似文献   

8.
The surface enhanced Raman scattering (SERS) of a number of species and strains of bacteria obtained on novel gold nanoparticle (approximately 80 nm) covered SiO(2) substrates excited at 785 nm is reported. Raman cross-section enhancements of >10(4) per bacterium are found for both Gram-positive and Gram-negative bacteria on these SERS active substrates. The SERS spectra of bacteria are spectrally less congested and exhibit greater species differentiation than their corresponding non-SERS (bulk) Raman spectra at this excitation wavelength. Fluorescence observed in the bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. Despite the field enhancement effects arising from the nanostructured metal surface, this fluorescence component appears "quenched" due to an energy transfer process which does not diminish the Raman emission. The surface enhancement effect allows the observation of Raman spectra of single bacterial cells excited at low incident powers and short data acquisition times. SERS spectra of B. anthracis Sterne illustrate this single cell level capability. Comparison with previous SERS studies reveals how the SERS vibrational signatures are strongly dependent on the morphology and nature of the SERS active substrates. The potential of SERS for detection and identification of bacterial pathogens with species and strain specificity on these gold particle covered glassy substrates is demonstrated by these results.  相似文献   

9.
Khaing Oo MK  Chang CF  Sun Y  Fan X 《The Analyst》2011,136(13):2811-2817
We report rapid, sensitive, and direct detection of 2,4-dinitrotoluene (DNT) vapor using tailored gold nanoparticles (Au-NPs) as the SERS substrate. The Au-NPs were synthesized using the UV-assisted photo-chemical reduction method and subsequently formed a monolayer on the glass slide through polymer-mediated self-assembly. The SERS substrate such prepared has high SERS enhancement, high affinity towards DNT vapor, and rapid response to the DNT adsorption/desorption. We systematically studied the effect of the Au-NP size and surface density on the SERS performance such as enhancement factor and response time. With the optimized SERS substrate, an enhancement factor over 5.6 × 10(6) was achieved. Furthermore, real-time detection of DNT vapor with only 0.35 second data acquisition time was demonstrated using a 12 mW laser. Compared to previously reported results, we achieved two orders of magnitude reduction in detection time and more than one order of magnitude reduction in excitation laser power. The detection limit is estimated to be 0.4 attogram, which corresponds to a sub-ppb DNT concentration in air. This work will lead to the development of ultra-fast and ultra-sensitive SERS devices for explosive identification and monitoring.  相似文献   

10.
Saute B  Narayanan R 《The Analyst》2011,136(3):527-532
We report the use of two different sizes of dogbone shaped gold nanoparticles as colloidal substrates for surface enhanced Raman spectroscopy (SERS) based detection of ultra-low levels of thiram, a dithiocarbamate fungicide. We demonstrate the ability to use a solution based, direct readout SERS method as a quantitative tool for the detection of ultra-low levels of thiram. The two different sizes of dogbone shaped gold nanoparticles are synthesized by using the seed-mediated growth method and characterized by using UV-visible spectroscopy and transmission electron microscopy (TEM). The smaller dogbone shaped nanoparticles have an average size of 43 ± 13 nm. The larger dogbone shaped gold nanoparticles have an average size of 65 ± 15 nm. The nanoparticle concentration is 1.25 × 10(11) nanoparticles per mL for the smaller dogbone shaped gold nanoparticles and is 1.13 × 10(11) nanoparticles per mL for the larger dogbone shaped gold nanoparticles. Different concentrations of thiram are allowed to bind to the two different sizes of dogbone shaped gold nanoparticles and the SERS spectra are obtained. From the calibration curve, the limit of detection for thiram is 43.9 ± 6.2 nM when the smaller dogbone shaped gold nanoparticles are used as colloidal SERS substrates In the case of the larger dogbone shaped gold nanoparticles, the limit of detection for thiram is 11.8 ± 3.2 nM. The lower limit of detection obtained by using the larger dogbone shaped gold nanoparticles as colloidal substrates is due to the lightning rod effect, higher contributions from the electromagnetic enhancement effect, and larger number of surface sites for thiram to bind.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) enhancement and the reproducibility of the SERS signal strongly reflect the quality and nature of the SERS substrates because of diverse localized surface plasmon resonance (LSPR) excitations excited at interstitials or sharp edges. LSPR excitations are the most important ingredients for achieving huge enhancements in the SERS process. In this report, we introduce several gold and silver nanoparticle-based SERS-active substrates developed solely by us and use these substrates to investigate the influence of LSPR excitations on SERS. SERS-active gold substrates were fabricated by immobilizing colloidal gold nanoparticles on glass slides without using any surfactants or electrolytes, whereas most of the SERS-active substrates that use colloidal gold/silver nanoparticles are not free of surfactant. Isolated aggregates, chain-like elongated aggregates and two-dimensional (2D) nanostructures were found to consist mostly of monolayers rather than agglomerations. With reference to correlated LSPR and SERS, combined experiments were carried out on a single platform at the same spatial position. The isolated aggregates mostly show a broadened and shifted SPR peak, whereas a weak blue-shifted peak is observed near 430 nm in addition to broadened peaks centered at 635 and 720 nm in the red spectral region in the chain-like elongated aggregates. In the case of 2D nanostructures, several SPR peaks are observed in diverse frequency regions. The characteristics of LSPR and SERS for the same gold nanoaggregates lead to a good correlation between SPR and SERS images. The elongated gold nanostructures show a higher enhancement of the Raman signal than the the isolated and 2D samples. In the case of SERS-active silver substrates for protein detection, a new approach has been adopted, in contrast to the conventional fabrication method. Colloidal silver nanoparticles are immobilized on the protein functionalized glass slides, and further SERS measurements are carried out based on LSPR excitations. A new strategy for the detection of biomolecules, particularly glutathione, under aqueous conditions is proposed. Finally, supramolecular J-aggregates of ionic dyes incorporated with silver colloidal aggregates are characterized by SERS measurements and correlated to finite-difference time-domain analysis with reference to LSPR excitations. Figure SPR and SERS images for isolated, elongated and two-dimensional gold nanostructures  相似文献   

12.
Highly active,stable and affordable surface enhanced Raman scattering(SERS) substrates were obtained by electrolyzing a mixture of AgNO_3(4×10~(-4) mol/L) and Na_3C_6H_5O_7·H_2O(6×10~(-5) mol/L) for 1,2,3 and 4h at 7V.With crystal violet(CV) as a test molecule,a portable Raman spectrometer with 785 nm laser excitation was employed to carry out the SERS detection.Colloidal Ag nanoparticles prepared by electrolyzing for 3 h with the particle size of(65±17) nm is a perfect SERS substrate for the ultratrace ...  相似文献   

13.
A gold nanoparticle film for surface-enhanced Raman scattering (SERS) was successfully constructed by an ionic surfactant-mediated Langmuir-Blodgett (LB) method. The gold film was formed by adding ethanol to a gold colloid/hexane mixture in the presence of dodecyltrimethylammonium bromide (DTAB). Consequently, gold nanoparticles (AuNPs) assembled at the water/hexane interface due to the decrease in surface charge density of AuNPs. Since DTAB binds the gold surface by a coulombic force, rather than a chemical bonding, it is easily replaced by target molecules for SERS purposes. The SERS enhancement factor of the 80 nm gold nanoparticle film was approximately 1.2 × 10(6) using crystal violet (CV) as a Raman dye. The SERS signal from the proposed DTAB-mediated film was approximately 10 times higher than that from the octanethiol-modified gold film, while the reproducibility and stability of this film compared to an octanethiol-modified film were similar. This method can also be applied to other metal nanostructures to fabricate metal films for use as a sensitive SERS substrate with a higher enhancement factor.  相似文献   

14.
X Wu  S Gao  JS Wang  H Wang  YW Huang  Y Zhao 《The Analyst》2012,137(18):4226-4234
High-quality surface-enhanced Raman scattering (SERS) spectra of aflatoxin (AF) B(1), B(2), G(1) and G(2) have been acquired using silver nanorod (AgNR) array substrates fabricated by oblique angle deposition method. Significant vibrational peaks are identified on the argon plasma-cleaned substrates, and those peaks agree very well with the Raman spectra calculated by density function theory (DFT). The concentration-dependent SERS detection is also explored. The relationship between the concentration (C) of different AFs and the SERS intensity (I) of the Raman peak at Δν = 1592 cm(-1) is found to follow the general relationship I = AC(α), with α ranging from 0.32 to 0.46 for the four AFs. The limits of detection (LODs) reach 5 × 10(-5) mol L(-1) for AFB(1), 1 × 10(-4) mol L(-1) for AFB(2), and 5 × 10(-6) mol L(-1) for both AFG(1) and AFG(2) in bulk solution, or 6.17 × 10(-16) mol/1.93 × 10(-4) ng of AFB(1), 1.23 × 10(-15) mol/3.88 × 10(-4) ng for AFB(2), 6.17 × 10(-17) mol/2.03 × 10(-5) ng for AFG(1), and 6.17 × 10(-17) mol/2.04 × 10(-5) ng for AFG(2) per laser spot. Principal component analysis (PCA) is used to successfully differentiate these four different kinds of AFs at different concentrations up to their detection limits. The LODs obtained from PCA agree with the LODs obtained by using peak fitting method. With such a low detection limit and outstanding differentiation ability, we prove the possibility of utilizing the SERS detection system as a platform for highly sensitive mycotoxin detection.  相似文献   

15.
A method for monitoring DPA release from a single germinating Bacillus subtilis endospore is reported. High S/N ratio SERS spectra were obtained with excitation power 3 mW at 647.1 nm and 1 min spectral collection times. The method is proof-of-principle for the SERS detection limit at the single spore level. This represents a 100- to 1000-fold improvement over previously reported detection limits for SERS-based measurements of DPA in endospores.  相似文献   

16.
A novel method has been reported for 2,6-dichlorophenol using surface-enhanced Raman scattering (SERS). SiO2/gold composites were selected as the SERS substrates to provide the response of gold nanoparticles. Molecular imprinting was subsequently used for the development of a specific detector to 2,6-dichlorophenol with precipitation polymerization. The molecularly imprinted polymer provided sensitive and selective SERS detection for the determination of 2,6-dichlorophenol. The intensity and concentration obeyed a linear relationship from 1?×?10?5 to 1?×?10?9?mol?L?1 2,6-dichlorophenol. The sensitivity of SERS with the molecularly imprinted polymers provides a promising approach for practical analysis.  相似文献   

17.
Surface-enhanced Raman scattering (SERS) spectroscopy and surface-enhanced infrared absorption (SEIRA) spectroscopy are analytical tools suitable for the detection of small amounts of various analytes adsorbed on metal surfaces. During recent years, these two spectroscopic methods have become increasingly important in the investigation of adsorption of biomolecules and pharmaceuticals on nanostructured metal surfaces. In this work, the adsorption of B-group vitamins pyridoxine, nicotinic acid, folic acid and riboflavin at electrochemically prepared gold and silver substrates was investigated using Fourier transform SERS spectroscopy at an excitation wavelength of 1,064 nm. Gold and silver substrates were prepared by cathodic reduction on massive platinum targets. In the case of gold substrates, oxidation–reduction cycles were applied to increase the enhancement factor of the gold surface. The SERS spectra of riboflavin, nicotinic acid, folic acid and pyridoxine adsorbed on silver substrates differ significantly from SERS spectra of these B-group vitamins adsorbed on gold substrates. The analysis of near-infrared-excited SERS spectra reveals that each of B-group vitamin investigated interacts with the gold surface via a different mechanism of adsorption to that with the silver surface. In the case of riboflavin adsorbed on silver substrate, the interpretation of surface-enhanced infrared absorption (SEIRA) spectra was also helpful in investigation of the adsorption mechanism.  相似文献   

18.
利用种子介导的软模板生长方法制备了金纳米线(Au NWs)阵列, 通过调节生长温度控制Au NWs阵列的形貌, 最后在经硼氢化钠(NaBH4)清洗过的Au NWs阵列上化学沉积银纳米颗粒(Ag NPs), 制得银/金纳米线(Ag/Au NWs)阵列作为表面增强拉曼散射(SERS)基底. 选用罗丹明6G(R6G)作为拉曼探针分子测定了Ag/Au NWs阵列的SERS性能. 结果表明, Ag/Au NWs阵列作为SERS基底具有高灵敏度、 优异的信号均匀性和良好的稳定性. 使用Ag/Au NWs阵列对孔雀石绿(MG)检测的检出限可低至1×10-8 mol/L, 线性范围为 1×10-8~1×10-4 mol/L. NaBH4可以在不影响SERS性能的情况下去除Ag/Au NWs阵列上吸附的分子, 使得 SERS基底可以重复使用. 使用Ag/Au NWs阵列对湖水中的MG进行检测, 得到了可靠的回收率, 证明Ag/Au NWs 阵列在检测环境水体中的孔雀石绿上具有应用潜力.  相似文献   

19.
食源性致病菌的快速、灵敏检测是食品和药品安全领域关注的重点.表面增强拉曼光谱(SERS)技术凭借其检测速度快、信息丰富、灵敏度高、无损等优势在食源性致病菌的快速、灵敏检测中受到广泛关注.本文从SERS检测基底材料入手,综述了液相基底、刚性固相基底、柔性固相基底等材料的特点和性能,并对其在致病菌快速、灵敏检测中的应用进行...  相似文献   

20.
M Lee  K Lee  KH Kim  KW Oh  J Choo 《Lab on a chip》2012,12(19):3720-3727
Here we report the development of a programmable and fully automatic gold array-embedded gradient microfluidic chip that integrates a gradient microfluidic device with gold-patterned microarray wells. This device provides a convenient and reproducible surface-enhanced Raman scattering (SERS)-based immunoassay platform for cancer biomarkers. We used hollow gold nanospheres (HGNs) as SERS agents because of their highly sensitive and reproducible characteristics. The utility of this platform was demonstrated by the quantitative immunoassay of alpha-fetoprotein (AFP) model protein marker. Our proposed SERS-based immunoassay platform has many advantages over other previously reported SERS immunoassay methods. The tedious manual dilution process of repetitive pipetting and inaccurate dilution is eliminated with this process because various concentrations of biomarker are automatically generated by microfluidic gradient generators with N cascade-mixing stages. The total assay time from serial dilution to SERS detection takes less than 60 min because all of the experimental conditions for the formation and detection of immunocomplexes can be automatically controlled inside the exquisitely designed microfluidic channel. Thus, this novel SERS-based microfluidic assay technique is expected to be a powerful clinical tool for fast and sensitive cancer marker detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号