首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Nanostructured Pt–M (M=Fe, Co, Ni, and Cu) alloy catalysts synthesized by a low temperature (70 °C) reduction procedure with sodium formate in aqueous medium have been investigated for oxygen reduction in sulfuric acid and as cathodes in single proton exchange membrane fuel cells (PEMFC). The Pt–M alloy catalysts show improved catalytic activity towards oxygen reduction compared to pure platinum. Among the various alloy catalysts investigated, the Pt–Co catalyst shows the best performance with the maximum catalytic activity and minimum polarization occurring at a Pt:Co atomic ratio of around 1:7. While mild heat treatments at moderate temperatures (200 °C) improve the catalytic activity due to a cleaning of the surface oxides, annealing at elevated temperatures (900 °C) degrade the activity due to an increase in particle size.  相似文献   

2.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

3.
采用等体积浸渍法制备了一系列不同Co/Mo原子比的碳纳米管(CNT)负载Co Mo催化剂。将该系列催化剂用于孤岛减压渣油加氢裂化反应,评价其催化效果,并在相同反应条件下与 γAl2O3负载Co-Mo催化剂的催化性能进行比较。结果表明,Co-Mo/CNT催化剂的催化效果略低于Co-Mo/γAl2O3催化剂。Co/Mo原子比对Co-Mo/CNT催化剂的催化效果有较大的影响。与相同载体的催化剂相比,当Co/Mo原子比为0.50时,Co-Mo/CNT催化剂具有最佳的催化效果,而Co-Mo/γAl2O3催化剂在Co/Mo原子比为0.35时具有最佳的催化效果。  相似文献   

4.
Atomic metal species‐based catalysts (AMCs) show remarkable possibilities in various catalytic reactions. The coordination configuration of the metal atoms has been widely recognized as the determining factor to the electronic structure and the catalytic activity. However, the synergistic effect between the adjacent layers of the multilayered AMCs is always neglected. We reported an atomic Co and Pt co‐trapped carbon catalyst, which exhibits a ultrahigh activity for HER in the wide range of pH (η10=27 and 50 mV in acidic and alkaline media, respectively) with ultralow metal loadings (1.72 and 0.16 wt % for Co and Pt, respectively), which is much superior to the commercial Pt/C. Theoretical analysis reveals that the atomic metals on the inner graphitic layers significantly alter the electronic structure of the outmost layer, thus tailoring the HER activity. This finding arouses a re‐thinking of the intrinsic activity origins of AMCs and suggests a new avenue in the structure design of AMCs.  相似文献   

5.
The pathway of formic acid electrooxidation strongly depends on the amount of three neighbouring Pt or Pd atoms in the surface of Pd- or Pt-based catalysts. Here, Pt decorated Pd/C nanoparticles (the optimal atomic ratio, Pd?:?Pt = 20?:?1) were designed and then synthesized through a facile galvanic replacement reaction where the amount of three neighbouring Pt or Pd atoms markedly decreased. As a result, discontinuous Pd and Pt atoms suppressed CO formation and exhibited unprecedented catalytic activity and stability toward formic acid electrooxidation while the cost was almost the same as that of Pd/C.  相似文献   

6.
Pd-Co/C催化剂上葡萄糖的催化氧化反应   总被引:4,自引:0,他引:4  
Pd-Co/C催化剂上葡萄糖的催化氧化反应  相似文献   

7.
用CeO2修饰炭粉做载体,使用有机溶胶法还原PdPt二元合金的方法制备了一系列PdPt/CeO2-C催化剂.借助电化学测试,探讨催化剂中不同Pd与Pt原子比例的PdPt二元合金和不同含量的CeO2对于甲酸电氧化催化活性的影响.不断减少PdPt合金中Pt的比例可以促使甲酸氧化的起始电位前移,当Pd:Pt=15:1时氧化电流出现极值;同时,随着催化剂中CeO2含量的增加,催化剂对于HCOOH氧化的电流密度增加,当含量为15%时达到最大值.相对于Pd/C催化剂,在Pd15Pt1/15CeO2-C催化剂表面的甲酸氧化反应起始电位负移至少0.1V,氧化的电流密度提高60%以上.结合X射线衍射(XRD),X射线光电子能谱(XPS),透射电镜(TEM)和热重(TG)等测试数据可以发现,当极少量的Pt与Pd形成合金,Pt与Pd之间产生电子效应,使得合金表面HCOOH氧化的过电位降低;而CeO2的添加不仅有助于PdPt二元合金的分散,更有可能改变甲酸在PdPt表面的氧化反应路径,发挥双功能机理.  相似文献   

8.
Designing high-performance and durable non-platinum catalysts as oxygen reduction reaction (ORR) catalysts is still a major barrier of fuel cell commercialization. In this work, simple hydrothermal and impregnation routes were applied to prepare non-platinum Pd-Co bimetallic nano-catalysts such as Fe-N doped graphene quantum dot (Fe-N-GQD) supported Pd3Co (Pd3Co/Fe-N-GQD 10 wt%), carbon supported Pd3Co/C (10 wt%), graphene quantum dot supported Pd3Co/C (10 wt%). The synthesized catalysts were physico-chemically characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electronmicroscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical investigation was carried out in three electrode half-cell system to evaluate the catalyst activity for oxygen reduction reaction (ORR), the tolerance to methanol crossover and durability. In comparison to commercial Pt/C (ETEK, 20 wt%), the Pd3Co/Fe-N-GQD with lower weight percentage catalyst (∼10 wt%) displayed comparable electrocatalytic activity toward ORR with even higher methanol-tolerance capability and durability. The fabricated Pd3Co/Fe-N-GQD with (10 wt %) metal loading exhibited only 20% lower activity than Pt/C (ETEK, 20 wt%) toward ORR. Nevertheless the durability study of the catalyst in acidic media showed that the Pd3Co/Fe-N-GQD preserve 40% of its activity while Pt/C (ETEK, 20 wt%) exhibited only 20% of its initial catalytic activity for ORR. Moreover the activity loss in the presence of methanol (0.1 M) was obtained for Pt/C (ETEK, 20 wt%) and Pd3Co/Fe-N-GQD 35% and 14%, respectively. To investigate the role of catalyst support, catalytic activities of Pd3Co/Fe-N-GQD, Pd3Co/C, Pd3Co/GQD and Pd/Fe-N-GQD were compared. The results demonstrated superior catalytic activity of Pd3Co/Fe-N-GQD which could be related to the cocatalytic role of Fe-N-GQD due to the presence numerous of active sites exposed to the reactants.  相似文献   

9.
用浸渍法分别将铂、钯负载在铝柱撑蒙脱石载体上,制备了铂、钯负载铝柱撑蒙脱石催化剂。运用X射线衍射(XRD)、原子吸收光谱(AAS)、透射电镜(TEM)等分析方法对样品的性能和结构进行了表征,并考察了不同铂、钯负载量的催化剂对一氧化碳的催化氧化性能。结果表明,铂、钯均以高度分散的纳米粒子状态均匀分布在载体表面,并表现出良好的CO催化氧化活性。铂、钯在铝柱撑蒙脱石载体表面的有效负载率在70%~76%之间,在相同的设计负载量条件下,铂的实际负载量和有效负载率均略大于钯。CO催化氧化试验结果表明,相对于负载前,负载后催化剂的催化活性明显增加,且其催化活性随着铂、钯负载量的增加而不断增强。在相同温度和负载量条件下,钯负载型催化剂的催化活性明显高于铂负载型催化剂。  相似文献   

10.
High-entropy alloy (HEA) catalysts have been widely studied in electrocatalysis. However, identifying atomic structure of HEA with complex atomic arrangement is challenging, which seriously hinders the fundamental understanding of catalytic mechanism. Here, we report a HEA-PdNiRuIrRh catalyst with remarkable mass activity of 3.25 mA μg−1 for alkaline hydrogen oxidation reaction (HOR), which is 8-fold enhancement compared to that of commercial Pt/C. Through machine learning potential-based Monte Carlo simulation, we reveal that the dominant Pd−Pd−Ni/Pd−Pd−Pd bonding environments and Ni/Ru oxophilic sites on HEA surface are beneficial to the optimized adsorption/desorption of *H and enhanced *OH adsorption, contributing to the excellent HOR activity and stability. This work provides significant insights into atomic structure and catalytic mechanism for HEA and offers novel prospects for developing advanced HOR electrocatalysts.  相似文献   

11.
王美丽  桑林  黄成德 《电化学》2007,13(4):377-381
应用循环伏安,计时电流,计时电位和XRD等方法研究了碱性介质中甲醇在自制PdNiO/C和Pd/C催化剂上的电化学氧化以及高温热处理对催化剂结构和性能的影响.结果表明,还原温度为70℃,Pd、Ni原子比为8∶2时,PdNiO/C催化剂对甲醇电化学氧化具有较好的催化活性.热处理可增大催化剂粒径,升高结晶度,降低分散度和催化活性,并且可使NiO从Pd的晶格中脱离出来.与Pd/C催化剂相比,优选的PdNiO/C催化剂有更高的催化活性和更好的抗毒化能力.  相似文献   

12.
以四丁基氢氧化铵作为相转移剂,以硼氢化钠为还原剂,利用相转移法在二氯甲烷中制备了一系列不同比例的Pd_xMo/C(Pd/Mo的原子比x=1、2、3、4、5)催化剂。透射电镜(TEM)图像显示,Pd_x Mo/C是呈2~4 nm的圆形颗粒,尺寸均匀、分散性良好。X射线衍射(XRD)结果表明,加入第二组元Mo后,Pd的晶格发生扩张,调节了 Pd的几何结构。此外,X射线光电子能谱(XPS)结果表明,相对于Pd/C,Pd_4Mo/C的Pd3d_(5/)2结合能负移了 0.50 eV,说明电负性较大的Pd从Mo吸电子,电子结构发生改变。氧还原反应(ORR)结果表明,不同比例的Pd_xMo/C催化剂活性均优于Pd/C,其中当x=4时,ORR活性最佳,其起始电位和半波电位分别为0.876和0.813 V,高于商业Pt/C的0.870和0.810 V。此外,在经过3 h的运行之后电流密度仍保留82.9%,与商业Pt/C相比具有明显的优势。  相似文献   

13.
We measured the activity of electrocatalysts, comprising Pt monolayers deposited on PdCo/C substrates with several Pd/Co atomic ratios, in the oxygen reduction reaction in alkaline solutions. The PdCo/C substrates have a core-shell structure wherein the Pd atoms are segregated at the particle’s surface. The electrochemical measurements were carried out using an ultrathin film rotating disk-ring electrode. Electrocatalytic activity for the O2 reduction evaluated from the Tafel plots or mass activities was higher for Pt monolayers on PdCo/C compared to Pt/C for all atomic Pd/Co ratios we used. We ascribed the enhanced activity of these Pt monolayers to a lowering of the bond strength of oxygenated intermediates on Pt atoms facilitated by changes in the 5d-band reactivity of Pt. Density functional theory calculations also revealed a decline in the strength of PtOH adsorption due to electronic interaction between the Pt and Pd atoms. We demonstrated that very active O2 reduction electrocatalysts can be devised containing only a monolayer Pt and a very small amount of Pd alloyed with Co in the substrate. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24, 2007.  相似文献   

14.
Nanocomposites consisting of the bimetallic carbide Co(6)Mo(6)C(2) supported on graphitic carbon ((g)C) were synthesized in situ by an anion-exchange method for the first time. The Co(6)Mo(6)C(2)/(g)C nanocomposites were not only chemically stable but also electrochemically stable. The catalyst prepared by loading Pt nanoparticles onto Co(6)Mo(6)C(2)/(g)C was evaluated for the oxygen reduction reaction in acidic solution and showed superior activity and stability in comparison with commercial Pt/C. The higher mass activity of the Pt-Co(6)Mo(6)C(2)/(g)C catalyst indicated that less Pt would be required for the same performance, which in turn would reduce the cost of the fuel cell electrocatalyst. The method reported here will promote broader interest in the further development of other nanostructured materials for real-world applications.  相似文献   

15.
发展兼具高活性和高稳定性的规整非铂电化学催化剂无论对于燃料电池的推广应用还是基础研究都具有重要意义.我们将钯纳米立方体(Pd nanocubes)作为晶种,使用表面掺杂的手段制备了一种表面结构规整的钨掺杂钯纳米立方体(W-doped Pd nanocubes).通过改变合成过程中所加入羰基钨前驱体的量以调控表面钨的原子比例,继而获得了钨原子比例分别为0%,0.8%,1.2%,1.5%的纳米立方体.所制W-doped Pd nanocubes/C催化剂在碱性条件下的氧还原反应中表现出优异性能,其中1.2%W-doped Pd nanocubes/C催化剂性能最佳,在0.9 VRHE时比活性达1.18 mA cm~(-2),质量活性达0.25 A mg~(-1)Pd,分别是商业Pt/C催化剂的4.7倍和2.5倍.研究表明,随着钨的掺杂量从0%增至1.5%,钨掺杂钯纳米立方体的d带中心从-2.49 eV逐渐降至-3.08 eV.同时,光电子能谱结果表明,随着钨掺杂量的增加,钯的3d峰位向低能逐渐偏移,说明了钨掺杂导致了电荷由钨转向钯.而d带中心的下移能够将更多的反键态拉下费米能级,继而导致反应中间体的吸附减弱.因此,由钨到钯的电荷转移导致的d带中心的下移,继而引起的反应中间体对催化剂的吸附作用变弱是氧还原催化活性增强的原因.而过高的W掺杂(1.5%)导致活性的降低也可以用Sabatier规则解释.在循环测试10000圈之后,1.2%W-doped Pd nanocubes/C催化剂的质量活性仅仅减少了14.8%,而商业Pt/C催化剂减少了40%,可见其具有极佳的稳定性.而且循环测试之后的透射电镜表征显示,相比于团聚严重的商业Pt/C催化剂,1.2%W-doped Pd nanocubes/C催化剂仍然分散良好,其形貌也几乎没有发生变化.此外,该催化剂对乙醇氧化反应也表现出优异的性能.在1.0 mol L~(-1)氢氧化钾和1.0 mol L~(-1)乙醇混合溶液中,测试峰电流达6.6 A mg~(-1)Pd,是Pd nanocubes/C催化剂的2.2倍,商业Pd/C催化剂的5.1倍.这同样得益于适量钨掺杂所导致的催化剂d带中心—下移引起的含碳中间体吸附的削弱.经过1000 s的稳定性测试,1.2%W-doped Pd nanocubes/C同样表现出高于商业Pd/C催化剂的稳定性.优异的氧还原和乙醇氧化性能表明所制1.2%W-doped Pd nanocubes/C是一种极具潜力的双功能燃料电池催化剂.  相似文献   

16.
以柠檬酸三钠为稳定剂,硼氢化钠为还原剂,制备了碳载型的Pd-Sb复合纳米催化剂(Pd-Sb/C),通过调制不同Pd:Sb摩尔比研究了其对甲酸电催化性能的影响. TEM结果表明,合成的纳米颗粒粒径较小且均匀分散在碳载体表面. XRD和XPS测试表明,Pd-Sb/C中少量的单质态Sb(0)高度分散在Pd颗粒中或表面,形成合金化程度较低的PdSb合金. 电化学测试表明,当Pd:Sb = 20:1时,合成的催化剂对甲酸的催化效能最佳. 与合成的Pd/C和商业Pd/C相比,Pd-Sb/C(20:1)的电流密度分别是Pd/C的2.6倍、商业Pd/C的4.2倍. Pd-Sb/C的整体催化性能得到改善主要归因于适量的单质态Sb(0)引入到Pd中,诱导产生电子效应和“双功能”效应,一方面减小Pd与CO毒性物种之间的吸附作用,另一方面促使Pd表面吸附的CO快速氧化,提高了Pd-Sb/C催化剂的抗CO中毒能力,使得Pd-Sb/C催化剂的整体催化性能得到改善.  相似文献   

17.
李彦杰  吴日枫  刘洋  文颖  沈培康 《催化学报》2021,42(5):772-780,中插7-中插8
聚合物电解质燃料电池阴极上的氧还原反应需要使用铂基催化剂,铂是地球上的贵金属之一.采用将不同的金属优化到核心中等多种策略可提高铂基催化剂的活性,从而降低铂的负载量.通过致力于高催化活性Pt2.7Pd0.3Ni凹面立方结构与高指数晶面的复合,表明凹面结构可以提供更多的活性位和高水平的催化活性,如果与其他金属复合,可以降低...  相似文献   

18.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳载Pt催化剂(Pt/Co-PPy-C),并将其作为阴极催化剂,组装单电池。考察了电池运行温度和氢气/空气计量比对单电池性能的影响,并与商业Pt/C催化剂进行了耐久性实验比较。 结果表明,运行温度为70 ℃,氢气与空气的计量比为1.2:2.5时单电池性能最佳。600 mA/cm2恒电流稳定运行150 h耐久性测试中,以Pt/Co-PPy-C为阴极催化剂的单电池平均电压衰退率为0.119 mV/h,是商业Pt/C催化剂的26%。耐久性测试前后,单电池的阴极电荷传递阻抗为7.176和8.767 Ω,均比商业Pt/C催化剂阻抗小;Pt颗粒粒径从2.46 nm增长到3.18 nm,均小于商业Pt/C催化剂的粒径。这表明,以Pt/Co-PPy-C催化剂为阴极催化剂制备的单电池性能优良,在质子交换膜燃料电池中有广泛的应用前景。  相似文献   

19.
We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).  相似文献   

20.
A nanoporous (NP) PdCo alloy with uniform structure size and controllable bimetallic ratio was fabricated simply by one‐step mild dealloying of a PdCoAl precursor alloy. The as‐made alloy consists of a nanoscaled bicontinuous network skeleton with interconnected hollow channels that extend in all three dimensions. With a narrow ligament size distribution around 5 nm, the NP PdCo alloy exhibits much higher electrocatalytic activity towards the oxygen‐reduction reaction (ORR) with enhanced specific and mass activities relative to NP Pd and commercial Pt/C catalysts. A long‐term stability test demonstrated that NP PdCo has comparable catalytic durability with less loss of ORR activity and electrochemical surface area than Pt/C. The NP PdCo alloy also shows dramatically enhanced catalytic activity towards formic acid electrooxidation relative to NP Pd and Pd/C catalysts. The as‐made NP PdCo holds great application potential as a promising cathode as well as an anode electrocatalyst in fuel cells with the advantages of superior catalytic performance and easy preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号