首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonequilibrium statistical mechanics via density fluctuation theory predicts relations between the bulk and shear viscosity, thermal conductivity, and self-diffusion coefficient of a fluid. In this Feature Article, we discuss such relations holding for fluids over wide ranges of density and temperature experimentally studied in the laboratory. It is discussed how such relations can be used to successfully compute the density and temperature dependence on the basis of intermolecular interaction potential models with the help of the modified free volume theory and the generic van der Waals equation of state once the parameters in them are determined at a low density or at a subcritical temperature. Although some approximations have been made to derive them, they represent a reliable molecular theory of transport coefficients over the entire density and temperature ranges of fluids--namely, gases and liquids--a theory hitherto unavailable in the kinetic theory of liquids and dense gases.  相似文献   

2.
In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.  相似文献   

3.
The shear viscosity formula derived by the density fluctuation theory in previous papers is computed for argon, krypton, and methane by using the self-diffusion coefficients derived in the modified free volume theory with the help of the generic van der Waals equation of state. In the temperature regime near or above the critical temperature, the density dependence of the shear viscosity can be accounted for by ab initio calculations with the self-diffusion coefficients provided by the modified free volume theory if the minimum (critical) free volume is set equal to the molecular volume and the volume overlap parameter (alpha) is taken about unity in the expression for the self-diffusion coefficient. In the subcritical temperature regime, if the density fluctuation range parameter is chosen appropriately at a temperature, then the resulting expression for the shear viscosity can well account for its density and temperature dependence over the ranges of density and temperature experimentally studied. In the sense that once the density fluctuation range is fixed at a temperature, the theory can account for the experimental data at other subcritical temperatures on the basis of the intermolecular force only; the theory is predictive even in the subcritical regime of temperature. Theory is successfully tested in comparison with experimental data for self-diffusion coefficients and shear viscosity for argon, krypton, and methane.  相似文献   

4.
In the previous papers applying the generic van der Waals equation of state the mean excluded volume was defined with the contact diameter of particles at which the potential energy is equal to zero-the size parameter in the case of the Lennard-Jones potential. This parameter appears as the upper limit of the integral for the generic van der Waals parameter B (mean excluded volume divided by the density) in the generic van der Waals equation of state. Since the choice is not unique, in this paper we reexamine the manner of defining the upper limit and propose another choice for the upper limit. We also propose an interpretation of the free volume overlap factor alpha appearing in the free volume theory of diffusion and a method of estimating it in terms of the intermolecular potential energy only. It is shown that with the so-estimated free volume overlap factor and the new choice of the upper limit of the integral for B the self-diffusion coefficient in the modified free volume theory of diffusion not only acquires a better accuracy than before, but also becomes calculable in terms of only the intermolecular interaction potential without an adjustable parameter. We also assess some of effective diameters of molecules proposed in the literature for their ability to predict the self-diffusion coefficient within the framework of the modified free volume theory of diffusion.  相似文献   

5.
The generalized Boltzmann equation for simple dense fluids gives rise to the stress tensor evolution equation as a constitutive equation of generalized hydrodynamics for fluids far removed from equilibrium. It is possible to derive a formula for the non-Newtonian shear viscosity of the simple fluid from the stress tensor evolution equation in a suitable flow configuration. The non-Newtonian viscosity formula derived is applied to calculate the non-Newtonian viscosity as a function of the shear rate by means of statistical mechanics in the case of the Lennard-Jones fluid. For that purpose we have used the density-fluctuation theory for the Newtonian viscosity, the modified free volume theory for the self-diffusion coefficient, and the generic van der Waals equation of state to compute the mean free volume appearing in the modified free volume theory. Monte Carlo simulations are used to calculate the pair-correlation function appearing in the generic van der Waals equation of state and shear viscosity formula. To validate the Newtonian viscosity formula obtained we first have examined the density and temperature dependences of the shear viscosity in both subcritical and supercritical regions and compared them with molecular-dynamic simulation results. With the Newtonian shear viscosity and thermodynamic quantities so computed we then have calculated the shear rate dependence of the non-Newtonian shear viscosity and compared it with molecular-dynamics simulation results. The non-Newtonian viscosity formula is a universal function of the product of reduced shear rate (gamma*) times reduced relaxation time (taue*) that is independent of the material parameters, suggesting a possibility of the existence of rheological corresponding states of reduced density, temperature, and shear rate. When the simulation data are reduced appropriately and plotted against taue*gamma* they are found clustered around the reduced (universal) non-Newtonian viscosity formula. Thus we now have a molecular theory of non-Newtonian shear viscosity for the Lennard-Jones fluid, which can be implemented with a Monte Carlo simulation method for the pair-correlation function.  相似文献   

6.
A newly proposed theory [R. Laghaei et al., J. Chem. Phys. 124, 154502 (2006)] was extended to polyatomics and applied to compute the density and temperature dependence of the effective site diameters of carbon disulfide fluids. The generic van der Waals (GvdW) theory was also extended to polyatomics in order to calculate the GvdW parameters and the molecular free volume using the effective site diameters as the repulsion-attraction separation distance. A three-site Lennard-Jones potential available in the literature was slightly modified and used in Monte Carlo simulations to obtain the functions appearing in the effective site diameter and GvdW expressions. The interaction potential was examined to reproduce the fluid phase thermodynamic properties using Gibbs ensemble Monte Carlo simulations and also the equation of state in the liquid phase using NVT Monte Carlo (NVT-MC) simulations. Comparison between the simulation results and experimental data shows excellent agreement for the densities of the coexisting phases, the vapor pressure, properties of the predicted critical point, and the equation of state. NVT-MC simulations were performed over a wide range of densities and temperatures in sub- and supercritical regions to compute the effective site diameters, the GvdW parameters, and the molecular free volume. The molecular structure in terms of the site-site pair correlation functions, the density dependence of the effective site diameters, and the density and temperature dependence of the GvdW parameters and molecular free volume were studied and discussed. The GvdW parameters were fitted to empirical expressions as a function of density and temperature. The computed molecular free volume will be used in future investigations to study the transport properties of carbon disulfide.  相似文献   

7.
A quantum mechanical derived ab initio interaction potential for the argon dimer was tested in molecular simulations to reproduce the thermophysical properties of the vapor-liquid phase equilibria using the Gibbs ensemble Monte Carlo simulations as well as the liquid and supercritical equation of state using the NVT Monte Carlo simulations. The ab initio interaction potential was taken from the literature. A recently developed theory [R. Laghaei et al., J. Chem. Phys. 124, 154502 (2006)] was used to compute the effective diameters of argon in fluid phases and the results were subsequently applied in the generic van der Waals theory to compute the free volume of argon. The calculated densities of the coexisting phases, the vapor pressure, and the equation of state show excellent agreement with experimental values. The effective diameters and free volumes of argon are given over a wide range of densities and temperatures. An empirical formula was used to fit the effective diameters as a function of density and temperature. The computed free volume will be used in future investigations to calculate the transport properties of argon.  相似文献   

8.
In this paper the thermal conductivity of the Lennard-Jones fluid is calculated by applying the combination of the density-fluctuation theory, the modified free volume theory of diffusion, and the generic van der Waals equation of state. A Monte Carlo simulation method is used to compute the equilibrium pair-correlation function necessary for computing the mean free volume and the coefficient in the potential-energy and virial contributions to the thermal conductivity. The theoretical results are compared with our own molecular dynamics simulation results and with those reported in the literature. They agree in good accuracy over wide ranges of density and temperature examined in molecular dynamics simulations. Thus the combined theory represents a molecular theory of thermal conductivity of the Lennard-Jones fluid and by extension simple fluids, which enables us to compute the nonequilibrium quantity by means of the Monte Carlo simulations for the equilibrium pair-correlation function.  相似文献   

9.
We calculate the generic van der Waals parameters A and B for a square well model by means of a perturbation theory. To calculate the pair distribution function or the cavity function necessary for the calculation of A and B, we have used the Percus-Yevick integral equation, which is put into an equivalent form by means of the Wiener-Hopf method. This latter method produces a pair of integral equations, which are solved by a perturbation method treating the Mayer function or the well width or the functions in the square well region exterior to the hard core as the perturbation. In the end, the Mayer function times the well width is identified as the perturbation parameter in the present method. In this sense, the present perturbation method is distinct from the existing thermodynamic perturbation theory, which expands the Helmholtz free energy in a perturbation series with the inverse temperature treated as an expansion parameter. The generic van der Waals parameters are explicitly calculated in analytic form as functions of reduced temperature and density. The van der Waals parameters are recovered from them in the limits of vanishing density and high temperature. The equation of state thus obtained is tested against Monte Carlo simulation results and found reliable, provided that the temperature is in the supercritical regime. By scaling the packing fraction with a temperature-dependent hard core, it is suggested to construct an equation of state for fluids with a temperature-dependent hard core that mimicks a soft core repulsive force on the basis of the equation of state derived for the square well model.  相似文献   

10.
It has been shown over the past ten years that the dynamics close to the glass transition is strongly heterogeneous: fast domains coexist with domains three or four decades slower, the size of these regions being about 3 nm at T(g). The authors extend here a model that has been proposed recently for the glass transition in van der Waals liquids. The authors describe in more details the mechanisms of the alpha relaxation in such liquids. It allows then to interpret physical ageing in van der Waals liquids as the evolution of the density fluctuation distribution towards the equilibrium one. The authors derive the expression of macroscopic quantities (volume, compliance, etc.). Numerical results are compared with experimental data (shape, times to reach equilibrium) for simple thermal histories (quenches, annealings). The authors explain the existence of a "Kovacs memory effect" and the temporal asymmetry between down jump and up jump temperatures experiments, even for systems for which there is no energy barriers. Their model allows also for calculating the evolution of small probe diffusion coefficients during ageing.  相似文献   

11.
12.
In this work we show how the ab initio determination of van der Waals coefficients within time-dependent density functional theory can be used to build efficient and accurate atomistic models that describe the long-range interactions of proteins with other proteins and of proteins with semi-conducting surfaces. The model parameters are fitted so that they reproduce the ab initio van der Waals coefficients of amino acids and dipeptides. We then assess the quality of our results by comparing ab initio van der Waals coefficients for larger peptides with the coefficients yielded by the models. The different sets of parameters can be easily incorporated in current empirical force field methods, thus providing an essential ingredient for molecular dynamics simulations of proteins close to surfaces.  相似文献   

13.
According to the fluctuation theory of phase transitions, a real liquid near the critical point is an ideal gas of the fluctuations of the order parameter, the size of which is determined by the correlation length of the system. We deduce the extended equation of state of liquids near the critical temperature by including the properties of the real van der Waals gas in this model, i.e., taking into account the own volume of the fluctuations of the order parameter and the interaction forces between them. We use this equation to analyze the temperature dependence of the density of a series of alkanes (C n H2n + 2, n = 1 − 12) along the line of the liquid-gas equilibrium near their critical temperatures. We show that the parameters of this extended equation of the state of substance are linear functions of the compressibility factor of alkanes.  相似文献   

14.
A new model for self-diffusion coe±cients was proposed based on both the concepts of molecular free volume and activation energy. The unknown parameters of this model were clearly defined and compared with the Chapman-Enskog model. At the same time a new method for calculating activation energy was devised and applied to the new model. In addition, the free volume was defined by implementing the generic van der Waals equation of state, the radial distribution function of which was obtained by using the MorsaliGoharshadi empirical formula. Under the same conditions, the new model was better than the original free volume model.  相似文献   

15.
A density-dependent local composition expression for the residual energy is derived from a generalized NRTL expression for the excess energy and the van der Waals fluid theory. Integration of this expression yields a volume-dependent expression for the Helmholtz energy from which equations of state utilizing the local composition concept are derived and which in the high-density limit contain the well-known activity coefficient models.The local composition versions of the Carnahan—Starling—van der Waals, the Redlich—Kwong—Soave and the Peng—Robinson equations of state are derived. It is further shown that the group contribution versions of the NRTL, the Wilson and the UNIQUAC excess models may be derived from the generalized NRTL expression for the residual energy when applied to groups instead of molecules.It is thus demonstrated that all current local composition activity-coefficient models can be derived from a local composition version of the van der Waals equation of state using different sets of assumptions. In the same way the van Laar, the Scatchard—Hildebrand and the Flory—Huggins activity coefficient models are obtained from the van der Waals equation of state using the original mixing rules.  相似文献   

16.
The stress-strain dependence of dry networks at unidirectional extension and compression is studied. The phenomenological van der Waals equation of state is compared with different molecular models in order to provide an interpretation of the van der Waals corrections. It is shown that the stress-strain behavior predicted by the phantom, Langevin, and constrained junction fluctuation models are altogether covered by the van der Waals approach. The relationship between the suppression of junction fluctuation parameter introduced by Dossin and Graessley and the van der Waals corrections has been worked out. The effect of junction functionality on the small strain modulus as well as on the second Mooney-Rivlin coefficient is also presented.  相似文献   

17.
A novel theory of an equation of state based on excluded volume and formulated in two preceding papers for gases and gaseous mixtures is extended to the entire density range by considering higher (beginning from the third) approximations of the theory. The algorithm of constructing higher approximations is elaborated. Equations of state are deduced using the requirement of maximum simplicity and contain a single free parameter to be chosen by reason of convenience or simplicity or to be used as a fitting parameter with respect to the computer simulation database. In this way, precise equations of state are derived for the hard-sphere fluid in the entire density range. On the side, the theory reproduces most known earlier equations of state for hard spheres and determines their place in the hierarchy of approximations. Equations of state for van der Waals fluids are also presented, and their critical parameters are estimated.  相似文献   

18.
Three critical-point exponents β, δ, γ and the corresponding coefficients B, D and G are calculated using significant structure theory. The results are compared with those obtained from the van der Waals equation, Berthelot's equation and the Dieterici equation. The significant structure theory and the van der Waals equation behave similarly in the critical region. All these equations of state predict a finite Cν at the critical point.  相似文献   

19.
The vapor-liquid phase envelope of Mie(14,7) fluids is determined by the Gibbs ensemble Monte Carlo (MC) simulation technique. The NVT-MC simulation method is then utilized to compute the equation of state and the pair correlation function over a wide range of densities and temperatures. The effective diameters are calculated via the virial minimization method and the results are applied as the repulsion-attraction splitting distance within the generic van der Waals (GvdW) theory to compute the mean free volume. The density and temperature dependence of these parameters are studied and discussed. The results for the effective diameter, and the GvdW parameters are fitted to analytical functions of density and temperature. An examination of the results for the fluid phase equilibria of argon shows excellent agreement with empirical data for the densities of the coexisting phases, the vapor pressure, and the critical point. The computed free volumes are used to compute the diffusion coefficient of argon and the results are compared with experimental data.  相似文献   

20.
A new approach to the theory of the equation of state of the adsorption monolayer is elucidated. The approach is based on the excluded surface area. Expressions for the chemical potential are analyzed and the derivation of a master equation, which can be used to obtain equations of state in different approximations, is demonstrated. The constructed hierarchy of approximations includes both the known equations of state (Planck, van der Waals, van Laar, Frumkin) and new, more accurate equations. The new approach consists in the consideration of the three-dimensional aspect related with the orientation of anisometric particles of a monolayer. The influence of the orientational effect on the equation of the monolayer state and phase transitions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号