首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical conductivity of V4O7 single crystals has been measured over a wide temperature range, including both the region of existence of the metallic phase and the region of the metal-insulator transition. It has been shown that the low conductivity of metallic V4O7 is due to the strong electron-electron correlation, whose role increases with decreasing temperature as the phase-transition temperature is approached. The temperature dependence of the conductivity of the insulator phase of V4O7 is explained in terms of the theory of hopping conduction taking into account the influence of atomic thermal vibrations on the resonance integral.  相似文献   

2.
The electrical conductivity of V3O5 single crystals has been investigated over a wide temperature range, including the region of existence of the metallic phase and the region of the transition from the metallic phase to the insulating phase. It has been shown that the low electrical conductivity of metallic V3O5 is caused, on the one hand, by a lower concentration of electrons and, on the other hand, by a strong electronelectron correlation whose role with decreasing temperature increases as the phase transition temperature is approached. The temperature dependence of the electrical conductivity of the insulating phase of V3O5 has been explained in the framework of the theory of hopping conduction, which takes into account the effect of thermal vibrations of atoms on the resonance integral.  相似文献   

3.
Solid solution Sr0.5Ba0.5Nb2O6 films have been synthesized on a (111)Pt/(001)Si substrate by rf deposition in an oxygen atmosphere. The depolarized Raman spectra, the structure, and the dielectric characteristics of the films have been studied over a wide temperature range. It is found that the films were singlephase, had the tetragonal tungsten bronze structure, and had a pronounced axial texture with axis 001 directed perpendicular to the substrate surface. It is shown that the film material undergoes a diffuse phase transition to the state of a relaxor ferroelectric in the temperature range 300–425 K. Possible reasons of the regularities observed are discussed.  相似文献   

4.
A. Oueslati 《Ionics》2017,23(4):857-867
A lithium yttrium diphosphate LiYP2O7 was prepared by a solid-state reaction method. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single phase desired compound with monoclinic structure at room temperature. The infrared and Raman spectrum of this compound was interpreted on the basis of P2O7 4? vibrations. The AC conductivity was measured in the frequency range from 100 to 106 Hz and temperatures between 473 and 673 K using impedance spectroscopy technique. The obtained results were analyzed by fitting the experimental data to the equivalent circuit model. The Cole–Cole diagram determined complex impedance for different temperatures. The angular frequency dependence of the AC conductivity is found to obey Jonscher’s relation. The temperature dependence of σ AC could be described in terms of Arrhenius relation with two activation energies, 0.87 eV in region I and 1.36 eV in region II. The study of temperature variation of the exponent(s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the correlated barrier hopping (CBH) model in region I (T < 540 K) and non-overlapping small polaron tunneling (NSPT) model in region II (T > 540 K). The near value of activation energies obtained from the equivalent circuit and DC conductivity confirms that the transport is through ion hopping mechanism dominated by the motion of the Li+ ion in the structure of the investigated material.  相似文献   

5.
The electrical conductivity σ of crystals of lithium heptagermanate Li2Ge7O15 doped with Cr and Mn is measured in an alternating-current field with a frequency of 1 kHz in the temperature range 300–700 K. It is found that doping strongly affects the electrical conductivity. It is established that the addition of 0.1 wt % Cr leads to an increase in the electrical conductivity σ by almost one order of magnitude, whereas the introduction of 0.03 wt % Mn substantially reduces the electrical conductivity along particular crystallographic directions. Data available on the incorporation of Cr and Mn impurity atoms into the lattice suggests that the electrical conductivity is determined by lithium ions hopping over interstitial positions along the structural channels.  相似文献   

6.
This paper reports the first results obtained on monobarium gallate thin films grown on silicon and platinum coated substrates by pulsed laser deposition. The influence of oxygen background pressure and substrate (or post-annealing) temperature on the film properties was studied. The films were characterized by XRD, RHEED, AFM, photoelectron and electrical impedance spectroscopy. The structure analysis showed that the films crystallized into a hexagonal phase, most probably into (metastable) α-BaGa2O4. Depending on deposition conditions, films with different (from nearly epitaxial to polycrystalline) textures were obtained.  相似文献   

7.
Layered cobalt oxides Ca3Co4O9 thin films have been grown directly on c-cut sapphire substrates using pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations show that the deposited films present the expected monoclinic structure and a texture along the direction perpendicular to the Al2O3(001) plane. The Ca3Co4O9 structure presents six variants in the film plane. Rutherford backscattering spectroscopy shows that the films are stoichiometric and that the film thickness agrees with the nominal value. The susceptibility χ of the films, recorded along the c-axis of the substrate, after field cooling and zero field cooling in an applied field of 1 kOe shows two magnetic transitions at 19 and 370 K which agree well with previous findings on single crystal samples. In turn, at low temperature (5 K), the magnetization curve along the c-axis exhibits coercive field and remanent magnetization much smaller than those reported for bulk samples, which can be related to the influence of structural variants and structural defects.  相似文献   

8.
This paper reports on the results of the investigation into the frequency dispersion of the capacitance and dielectric loss in capacitor structures based on red lead Pb3O4. It is established that, in the range of frequencies f = 1.50 × 10?3?0.25 Hz, the capacitance decreases and the dielectric loss tangent increases with increasing frequency. The frequency dependence of the electrical conductivity in an alternating-current electric field indicates the applicability of the hopping model of charge transfer under normal conditions. The role of a lone electron pair of Pb2+ cations in dielectric polarization is discussed.  相似文献   

9.
NaNi1.5P2O7 compound was obtained by the classic ceramic method at high temperature and was characterized by XRD. It was found to crystallize in the triclinic symmetry with the P-1 space group. The electrical conductivity and modulus characteristics of the system have been investigated in the temperature and the frequency range 586–723 K and 200 Hz–1 MHz, respectively, by means of impedance spectroscopy. The ac conductivity for grain contribution was interpreted using the universal Jonscher’s power law. The exponent s decreased with increasing temperature revealing that the conduction inside the studied material is insured by the correlated barrier hopping (CBH) model. The conduction mechanism was explained with the help of Elliot’s theory, and the Elliot’s parameters were determined. Thermodynamic parameters such as the free energy for dipole relaxation ΔG, the enthalpy ΔH, and the change in entropy ΔS have been calculated.  相似文献   

10.
The α-Zn2P2O7 compound was obtained by conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, solid state 31P NMR MAS, and electrical impedance spectroscopy. The solid state 31P MAS NMR, performed at 121.49 MHz, shows three isotropic resonances at −21.1, −18.8, and −15.8 ppm, confirming the non-equivalency of the three PO4 groups in the α-Zn2P2O7 form. They are characterized by different chemical shift tensor parameters with the local geometrical features of the tetrahedra. Electrical impedance measurements of β-Zn2P2O7, form stable for temperature greater than 403 K, were performed as a function of both temperature and frequency. The electrical conduction and dielectric relaxation have been studied. The AC conductivity obeys the universal power law. The approximation type correlated barrier hopping model explains the universal behavior of the n exponent. The impedance plane plot shows semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The simulated spectra show a good correlation with the experimental data.  相似文献   

11.
The microstructures of amorphous and polycrystalline ferroelectric Hf0.5Zr0.5O2 films are studied by X-ray spectroscopy and ellipsometry. EXAFS spectra demonstrate that the amorphous film consists of an “incompletely mixed” solid solution of metallic oxides HfO2 and ZrO2. After rapid thermal annealing, the mixed Hf0.5Zr0.5O2 oxide films have a more ordered polycrystalline structure, and individual Hf and Zr monoxide islands are formed in the films. These islands are several nanometers in size and have a structure that is similar to the monoclinic structure of HfO2 and ZrO2. The presence of the HfO2 and ZrO2 phases in the Hf0.5Zr0.5O2 films is also detected by ellipsometry.  相似文献   

12.
Bi3.25Pr0.75Ti3O12 (BPT) ferroelectric thin films have been prepared by chemical solution deposition on platinized Si substrates. Well-crystallized BPT films can be achieved by 600 °C rapid thermal annealing. The film surface is smooth and crack-free, composed of uniform spherical grains around 90–100 nm in diameter. The electrical properties of Pt/BPT/Pt thin film capacitors were characterized by hysteresis and impedance measurements. The remanent polarization of 700 °C annealed BPT films is around 20 C/cm2 at 120-kV/cm stimulus field. The dielectric constant is around 380 at 10 kHz, 100-mV amplitude. The remanent polarization of BPT film showed a slight reduction, 10% of its original value, after 2.8×109 cycles, while a 30% reduction of non-volatile polarization was observed. PACS 81.15.-z; 77.55.+f; 77.22.Gm  相似文献   

13.
The electrical properties of a lithium heptagermanate (Li2Ge7O15) crystal have been studied in DC and AC measuring fields at temperatures from 500 to 700 K. In a DC field, a substantial decrease of electrical conductivity σ with time has been detected. On the basis of kinetic dependences σ(t), estimates of the charge carrier diffusion coefficient D have been obtained. In the frequency range 101–105 Hz, the spectra of complex impedance ρ*(f) have been measured. The analysis of diagrams in the complex plane (ρ″–ρ′) has been performed within the equivalent circuit approach. It has been shown that, in the considered temperature and frequency intervals, the electrical properties of Li2Ge7O15 crystals have been determined by the hopping conduction of interstitial lithium ions A Li and accumulation of charge carriers near the blocking Pt electrodes.  相似文献   

14.
In general, the conductivity in chalcogenide glasses at higher temperatures is dominated by band conduction (DC conduction). But, at lower temperatures, hopping conduction dominates over band conduction. A study at lower temperature can, eventually, provide useful information about the conduction mechanism and the defect states in the material. Therefore, the study of electrical properties of GexSe100-x in the lower temperature region (room temperature) is interesting. Temperature and frequency dependence of GexSe100-x (x = 15, 20 and 25) have been studied over different range of temperatures and frequencies. An agreement between experimental and theoretical results suggested that the behaviour of germanium selenium system (GexSe100-x ) have been successfully explained by correlated barrier hopping (CBH) model.  相似文献   

15.
Sodium silicate glasses doped with CuO and mixed with different contents of Bi2O3 (ranging from 4 to 16 mol%) were prepared. D.C. conductivity studies over a range of temperature from 225 to 325 K have been carried out. The conductivity is observed to decrease linearly with increase of Bi2O3 concentration. The results are analyzed using optical absorption, ESR, and IR spectral data. The spectroscopic studies have indicated that there is a gradual reduction divalent copper ions to monovalent ions with increase of Bi2O3 concentration. These studies have also indicated that such Cu+ ions participate in the glasses network forming and increase the polymerization of the glass network. The analysis of the results of D.C. conductivity indicated that in temperature region T > θ D/2, the small polaron hoping model is valid, and the conduction is predicted to be adiabatic type. The analysis of the results has further revealed that there is a gradual change over of conduction mechanism from ionic to electronic with increase of Bi2O3 concentration. The low temperature part of D.C. conductivity is explained using variable range hopping (VRH) model.  相似文献   

16.
The monolayer Al2O3:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 °C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al2O3:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 °C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers.  相似文献   

17.
Dc and ac electrical conductivity of lead molybdate crystals is studied in the temperature range 300–550 K. The electrical conductivity was shown to have electronic (hole) impurity character. The IV characteristics are typical of a space charge-limited current. The carrier mobility was estimated to be 10?5 cm2 V?1 sat T=300 K. The results of the study suggest the hopping mechanism of conduction in PbMoO4 crystals.  相似文献   

18.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

19.
On intercalated AgxMoSe2 samples, in addition to temperature measurements of the direct current electrical resistivity, measurements of the alternating current resistivity using the impedance spectroscopy technique are carried out in a wide frequency range and at different temperatures. The activation behavior of the d.c. conductivity, which increases with increasing silver content in the samples, is shown. The a.c. conductivity undergoes frequency dispersion, described by a “universal dynamic response” (UDR). It is shown that the relaxation processes during charge transfer in a variable field are accelerated with increasing silver content in the samples and with increasing temperature. The data obtained are analyzed using the models of the band and hopping conduction.  相似文献   

20.
The temperature behavior of I-U curves and the field and temperature dependences of the electrical resistivity and dielectric permittivity of crystals of the LiCu2O2 phase have been studied. It was established that the crystals belong to p-type semiconductors and that their static resistivity in the range 80–260 K follows the Mott law ρ=Aexp(T0/T)1/4 describing variable-range hopping over localized states. At comparatively low electric fields, the crystals exhibit threshold switching and characteristic S-shaped I-U curves containing a region of negative differential resistivity. In the critical voltage region, jumps in the conductivity and dielectric permittivity are observed. Possible mechanisms of the disorder and electrical instability in these crystals are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号